Publications by authors named "Andrew T Lambe"

Hydroxyl radical (OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs).

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) data gathered in environmental chambers (ECs) have been used extensively to develop parameters to represent SOA formation and evolution. The EC-based parameters are usually constrained to less than one day of photochemical aging but extrapolated to predict SOA aging over much longer timescales in atmospheric models. Recently, SOA has been increasingly studied in oxidation flow reactors (OFRs) over aging timescales of one to multiple days.

View Article and Find Full Text PDF

Secondary organic aerosols (SOA) constitute a large fraction of atmospheric aerosols, yet our knowledge of the formation and aging processes of SOA in megacities of China is still limited. In this work, the formation and aging processes of SOA in winter in Beijing was investigated using a high-resolution aerosol mass spectrometer (AMS) and an oxidation flow reactor (OFR). Our results showed that the OA enhancement from OH aging peaked at ∼3.

View Article and Find Full Text PDF

Oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formation potential of ambient air in Guangzhou, China was investigated using a field-deployed oxidation flow reactor (OFR). The OFR was used to mimic hours to weeks of atmospheric exposure to hydroxyl (OH) radicals within the 2-3 min residence time. A comprehensive investigation on the variation of VOCs and OVOCs as a function of OH exposure is shown.

View Article and Find Full Text PDF

Vehicle emissions are an important source of urban particular matter. To investigate the secondary organic aerosol (SOA) formation potential of real-world vehicle emissions, we exposed on-road air in Beijing to hydroxyl radicals generated in an oxidation flow reactor (OFR) under high-NO conditions on-board a mobile laboratory and characterized SOA and their precursors with a suite of state-of-the-art instrumentation. The OFR produced 10-170 μg m of SOA with a maximum SOA formation potential of 39-50 μg m ppmv CO that occurred following an integrated OH exposure of (1.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines.

View Article and Find Full Text PDF

Black carbon (BC) absorbs solar radiation, leading to a strong but uncertain warming effect on climate. A key challenge in modeling and quantifying BC's radiative effect on climate is predicting enhancements in light absorption that result from internal mixing between BC and other aerosol components. Modeling and laboratory studies show that BC, when mixed with other aerosol components, absorbs more strongly than pure, uncoated BC; however, some ambient observations suggest more variable and weaker absorption enhancement.

View Article and Find Full Text PDF

The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards.

View Article and Find Full Text PDF

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state.

View Article and Find Full Text PDF

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na during electrospray ionization operated in the positive ion mode.

View Article and Find Full Text PDF

Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle.

View Article and Find Full Text PDF

We measured the gas-particle partitioning of vehicle emitted primary organic aerosol (POA) in a traffic tunnel with three independent methods: artifact corrected bare-quartz filters, thermodenuder (TD) measurements, and thermal-desorption gas-chromatography mass-spectrometry (TD-GC-MS). Results from all methods consistently show that vehicle emitted POA measured in the traffic tunnel is semivolatile under a wide range of fleet compositions and ambient conditions. We compared the gas-particle partitioning of POA measured in both tunnel and dynamometer studies and found that volatility distributions measured in the traffic tunnel are similar to volatility distributions measured in the dynamometer studies, and predict similar gas-particle partitioning in the TD.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.

View Article and Find Full Text PDF

Brown carbon (BrC), which may include secondary organic aerosol (SOA), can be a significant climate-forcing agent via its optical absorption properties. However, the overall contribution of SOA to BrC remains poorly understood. Here, correlations between oxidation level and optical properties of SOA are examined.

View Article and Find Full Text PDF

Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.

View Article and Find Full Text PDF

Recent research has proposed that low-volatility organic vapors are an important class of secondary organic aerosol (SOA) precursors. Mixtures of low-volatility organics were photo-oxidized in a smog chamber under low- and high-NO(x) conditions. Separate experiments addressed emission surrogates (diesel fuel and motor oil) and single components (n-pentacosane).

View Article and Find Full Text PDF

Hydroxyl radical (OH) uptake by organic aerosols, followed by heterogeneous oxidation, happens nearly at the collision frequency. Oxidation complicates the use of organic molecular markers such as hopanes for source apportionment, since receptor models assume markers are stable during transport. We report the oxidation kinetics of organic molecular markers (C(25)-C(32) n-alkanes, hopanes and steranes) in motor oil and primary organic aerosol emitted from a diesel engine at atmospherically relevant conditions inside a smog chamber.

View Article and Find Full Text PDF

Triterpanoid hopanes and steranes are petroleum biomarkers used to apportion fine particulate matter to motor vehicle emissions. To investigate the chemical stability of these compounds, aerosolized motor oil was exposed to the hydroxyl radical (OH) in a smog chamber and the reaction rate constants of hopanes, steranes, and n-alkanes were measured. The experiments were conducted across a range of atmospheric conditions including low and high relative humidity (RH) and with mixtures of lubricating oil and secondary organic aerosol.

View Article and Find Full Text PDF

We present a novel method for continuous, stable OH radical production for use in smog chamber studies, especially those focused on organic aerosol aging. Our source produces OH radicals from the reaction of 2,3-dimethyl-2-butene and ozone and is unique as a method that requires neither NOx nor UV photolysis of a radical precursor. Typical radical concentrations are in the range of (4-8) x 10(6) molec cm(-3) and are easily sustainable over experimental time scales of several hours.

View Article and Find Full Text PDF