Label-free multiphoton microscopy is a powerful platform for biomedical imaging. Recent advancements have demonstrated the capabilities of transient absorption microscopy (TAM) for label-free quantification of hemoglobin and stimulated Raman scattering (SRS) microscopy for pathological assessment of label-free virtual histochemical staining. We propose the combination of TAM and SRS with two-photon excited fluorescence (TPEF) to characterize, quantify, and compare hemodynamics, vessel structure, cell density, and cell identity in vivo between age groups.
View Article and Find Full Text PDFBlood disorders, diseases, and infections often affect the shape, number, and content of red blood cells (RBCs) dramatically. To combat these pathologies, many therapies target RBCs and their contents directly. Mean corpuscular hemoglobin concentration (MCHC) is an important pathological metric in both identification and treatment.
View Article and Find Full Text PDFIron corrosion in drinking water distribution systems causes water discoloration, water quality deterioration, hydraulic loss, and even pipe failures, which are usually influenced by pipe scale structure, water hydraulics, water chemistry, and other factors. This work evaluated the effects of chloride, sulfate, and dissolved inorganic carbon (DIC) on iron release from a 90-year-old cast iron pipe section at water pH 8.0 under stagnant conditions.
View Article and Find Full Text PDFIntraoperative consultations, used to guide tumor resection, can present histopathological findings that are challenging to interpret due to artefacts from tissue cryosectioning and conventional staining. Stimulated Raman histology (SRH), a label-free imaging technique for unprocessed biospecimens, has demonstrated promise in a limited subset of tumors. Here, we target unexplored skull base tumors using a fast simultaneous two-channel stimulated Raman scattering (SRS) imaging technique and a new pseudo-hematoxylin and eosin (H&E) recoloring methodology.
View Article and Find Full Text PDFStimulated Raman scattering (SRS) microscopy is a powerful method for imaging molecular distributions based on their intrinsic vibrational contrast. However, despite a growing list of biological applications, SRS is frequently hindered by a parasitic background signal which both overpowers the signal in low-signal applications and makes the extraction of quantitative information from images challenging. Frequency modulation (FM) has been used to suppress this parasitic background.
View Article and Find Full Text PDFBiomed Opt Express
August 2019
Stimulated Raman scattering (SRS) microscopy is a label-free quantitative chemical imaging technique that has demonstrated great utility in biomedical imaging applications ranging from real-time stain-free histopathology to live animal imaging. However, similar to many other nonlinear optical imaging techniques, SRS images often suffer from low signal to noise ratio (SNR) due to absorption and scattering of light in tissue as well as the limitation in applicable power to minimize photodamage. We present the use of a deep learning algorithm to significantly improve the SNR of SRS images.
View Article and Find Full Text PDFHemoglobin, the oxygen carrying protein, ferries nearly all bodily oxygen from the lungs to cells and tissues in need. Blood oxygen saturation (sO) thus plays an important role in maintaining energy homeostasis throughout the body. Clinical and research tools have been developed to monitor sO at a wide range of temporal and spatial scales.
View Article and Find Full Text PDFLocalized drug delivery systems (DDSs) provide therapeutic levels of drug agent while mitigating side effects of systemic delivery. These systems offer controlled release over extended periods of time making them attractive therapies. Monitoring drug dissolution is vital for developing safe and effective means of drug delivery.
View Article and Find Full Text PDF