Twenty varieties of field-grown potato were stored for 2 months and 6 months at 8 °C. Mean acrylamide contents in crisps prepared from all varieties at both storage times ranged from 131 μg/kg in Verdi to 5360 μg/kg in Pentland Dell. In contrast to previous studies, the longer storage period did not affect acrylamide formation significantly for most varieties, the exceptions being Innovator, where acrylamide formation increased, and Saturna, where it decreased.
View Article and Find Full Text PDFTo examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher.
View Article and Find Full Text PDFWhen wheat was grown under conditions of severe sulfate depletion, dramatic increases in the concentration of free asparagine were found in the grain of up to 30 times as compared to samples receiving the normal levels of sulfate fertilizer. The effect was observed both in plants grown in pots, where the levels of nutrients were carefully controlled, and in plants grown in field trials on soil with poor levels of natural nutrients where sulfate fertilizer was applied at levels from 0 to 40 kg sulfur/Ha. Many of the other free amino acids were present at higher levels in the sulfate-deprived wheat, but the levels of free glutamine showed increases similar to those observed for asparagine.
View Article and Find Full Text PDFAcrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored.
View Article and Find Full Text PDFThe relationship between acrylamide and its precursors, namely free asparagine and reducing sugars, was studied in simple cakes made from potato flake, wholemeal wheat and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, large losses of asparagine, water and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to any extent until the moisture contents of the cakes fell below 5%.
View Article and Find Full Text PDFA kinetic model for the formation of acrylamide in potato, rye and wheat products has been derived, and kinetic parameters calculated for potato by multi-response modeling of reducing sugar (glucose and fructose), amino acid, asparagine and acrylamide concentrations with time. The kinetic mechanism shares, with Maillard browning, a rate limiting (probably dicarbonylic) intermediate, and includes reaction steps of this intermediate which are competitive with respect to acrylamide formation. A pathway representing physical and/or chemical losses of acrylamide accounts for the measured reduction of acrylamide yield at long reaction times.
View Article and Find Full Text PDFThe relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%.
View Article and Find Full Text PDFReports of the presence of acrylamide in a range of fried and oven-cooked foods have caused worldwide concern because this compound has been classified as probably carcinogenic in humans. Here we show how acrylamide can be generated from food components during heat treatment as a result of the Maillard reaction between amino acids and reducing sugars. We find that asparagine, a major amino acid in potatoes and cereals, is a crucial participant in the production of acrylamide by this pathway.
View Article and Find Full Text PDFJ Agric Food Chem
September 2002
Tubers of five cultivars of potato were stored at 4 degrees C for 2, 3, and 8 months and baked in a conventional oven. The flavor compounds from the baked potato flesh were isolated by headspace adsorption onto Tenax and analyzed by gas chromatography-mass spectrometry. On a quantitative basis, compounds derived from lipid and Maillard reaction/sugar degradation dominated the flavor isolates, with sulfur compounds, methoxypyrazines, and terpenes making smaller contributions.
View Article and Find Full Text PDF