Publications by authors named "Andrew T Conn"

Optimising the sensitivity of a tactile sensor to a specific range of stimuli magnitude usually compromises the sensor's widespread usage. This paper presents a novel soft tactile sensor capable of dynamically tuning its stiffness for enhanced sensitivity across a range of applied forces, taking inspiration from the Eustachian tube in the mammalian ear. The sensor exploits an adjustable pneumatic back pressure to control the effective stiffness of its 20 mm diameter elastomer interface.

View Article and Find Full Text PDF

Flapping micro-air vehicles (MAVs) can access a wide range of locations, including confined spaces such as the inside of industrial plants and collapsed buildings, and offer high maneuverability and tolerance to disturbances. However, current flapping MAVs require transmission systems between their actuators and wings, which introduce energetic losses and additional mass, hindering performance. Here, we introduce a high-performance electrostatic flapping actuation system, the liquid-amplified zipping actuator (LAZA), which induces wing movement by direct application of liquid-amplified electrostatic forces at the wing root, eliminating the requirement of any transmission system and their associated downsides.

View Article and Find Full Text PDF

Soft materials are driving the development of a new generation of robots that are intelligent, versatile, and adept at overcoming uncertainties in their everyday operation. The resulting soft robots are compliant and deform readily to change shape. In contrast to rigid-bodied robots, the shape of soft robots cannot be described easily.

View Article and Find Full Text PDF

Soft robots have the potential to diminish the need for humans to venture into unsuitable environments or work in extreme conditions. While their soft nature gives them the advantage of being adaptable to changing environments, their control can be challenging because of the compliance that makes them effective. In this paper we present RUBIC: the Rolling, Untethered, Ballooning, Intelligent Cube, that overcomes some of the difficulties of 2D control by constraining motion to a discretised Cartesian space.

View Article and Find Full Text PDF

In the last two decades, insect-inspired flapping wing micro air vehicles (MAVs) have attracted great attention for their potential for highly agile flight. Insects flap their wings at the resonant frequencies of their flapping mechanisms. Resonant actuation is highly advantageous as it amplifies the flapping amplitude and reduces the inertial power demand.

View Article and Find Full Text PDF

Swimming is employed as a form of locomotion by many organisms in nature across a wide range of scales. Varied strategies of shape change are employed to achieve fluidic propulsion at different scales due to changes in hydrodynamics. In the case of microorganisms, the small mass, low Reynolds number and dominance of viscous forces in the medium, requires a change in shape that is non-invariant under time reversal to achieve movement.

View Article and Find Full Text PDF