An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFExpanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors.
View Article and Find Full Text PDFComplexes of the trivalent lanthanides and Am with di-2-ethylhexylphosphoric acid (HDEHP) dissolved in an aliphatic diluent were probed with UV-vis, X-ray absorption fine structure, and time-resolved fluorescence spectroscopy while the water concentration was determined by Karl Fischer titrations. In particular, our work focuses on the Nd-hypersensitive UV-vis absorbance region to identify the cause of changing absorbance values at 570 and 583 nm in relation to the pseudooctahedral Nd environment when coordinated with three HDEHP dimers. In contrast to recently reported interpretations, we establish that while impurities have an effect on this electronic transition band, a high water content can cause distortion of the pseudooctahedral symmetry of the six-coordinate Nd, resembling the reported spectra of the seven-coordinate Nd compounds.
View Article and Find Full Text PDFThe trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry.
View Article and Find Full Text PDF