Publications by authors named "Andrew Stott"

The potassium (K) ion channel KCNK13 is specifically expressed in human microglia with elevated expression observed in post-mortem human brain tissue from patients with Alzheimer's disease. Modulation of KCNK13 activity by a small-molecule inhibitor is proposed as a potential treatment for neurodegenerative diseases. Herein, we describe the evolution of a series of KCNK13 inhibitors derived from a high-throughput screening campaign, resulting in , a potent, selective, and brain permeable clinical candidate molecule.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin () gene. We report the design of a series of pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of mRNA transcripts and protein levels.

View Article and Find Full Text PDF

Seagrass meadows are one of the most productive ecosystems on the planet, but their photosynthesis rate may be limited by carbon dioxide but mitigated by exploiting the high concentration of bicarbonate in the ocean using different active processes. Seagrasses are declining worldwide at an accelerating rate because of numerous anthropogenic pressures. However, rising ocean concentrations of dissolved inorganic carbon, caused by increases in atmospheric carbon dioxide, may benefit seagrass photosynthesis.

View Article and Find Full Text PDF

The carbon cycle is a key regulator of Earth's climate. On geological time-scales, our understanding of particulate organic matter (POM), an important upper ocean carbon pool that fuels ecosystems and an integrated part of the carbon cycle, is limited. Here we investigate the relationship of planktonic foraminifera-bound organic carbon isotopes (δC) with δC of POM (δC).

View Article and Find Full Text PDF

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor.

View Article and Find Full Text PDF

Plasma protein binding and tissue binding are arguably two of the most critical parameters that are measured as part of a drug discovery program since, according to the free drug hypothesis, it is the free drug that is responsible for both efficacy and toxicity. This chapter aims to deconstruct the role of plasma protein and tissue binding in drug discovery programs, and to consider the conclusion made by Pfizer and Genentech/Depomed a decade ago that optimising plasma protein binding as an independent parameter does not significantly influence efficacy. This chapter will also examine how binding metrics are applied in drug discovery programs and explore circumstances where optimising plasma protein or tissue binding can be an effective strategy to deliver a candidate molecule for preclinical development with an early indication of sufficient therapeutic index.

View Article and Find Full Text PDF

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, ) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound in mice to estimate a class I/IIb deacetylation EC, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout.

View Article and Find Full Text PDF

We have identified a potent, cell permeable and CNS penetrant class IIa histone deacetylase (HDAC) inhibitor 22, with >500-fold selectivity over class I HDACs (1,2,3) and ∼150-fold selectivity over HDAC8 and the class IIb HDAC6 isoform. Dose escalation pharmacokinetic analysis demonstrated that upon oral administration, compound 22 can reach exposure levels in mouse plasma, muscle and brain in excess of cellular class IIa HDAC IC levels for ∼8 h. Given the interest in aberrant class IIa HDAC function for a number of neurodegenerative, neuromuscular, cardiac and oncology indications, compound 22 (also known as CHDI-390576) provides a selective and potent compound to query the role of class IIa HDAC biology, and the impact of class IIa catalytic site occupancy in vitro and in vivo.

View Article and Find Full Text PDF

The effects of increased tropospheric ozone (O) pollution levels on methane (CH) emissions from peatlands, and their underlying mechanisms, remain unclear. In this study, we exposed peatland mesocosms from a temperate wet heath dominated by the sedge Schoenus nigricans and Sphagnum papillosum to four O treatments in open-top chambers for 2.5years, to investigate the O impacts on CH emissions and the processes that underpin these responses.

View Article and Find Full Text PDF

Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models.

View Article and Find Full Text PDF

This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites-the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site.

View Article and Find Full Text PDF

Synthesis of (S)-2-methyl-3-fluorophenyl cyclopentanone methyl ester (1S)-1 has been achieved by both inter- and intramolecular alkylation reactions on multigram scale, using chiral pool reagents. The intramolecular variant is a novel example of a chiral bis-electrophile reacting with a carbon nucleophile to form an enantiomerically pure all-carbon quaternary center.

View Article and Find Full Text PDF

Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g.

View Article and Find Full Text PDF

Inhibition of class IIa histone deacetylase (HDAC) enzymes have been suggested as a therapeutic strategy for a number of diseases, including Huntington's disease. Catalytic-site small molecule inhibitors of the class IIa HDAC4, -5, -7, and -9 were developed. These trisubstituted diarylcyclopropanehydroxamic acids were designed to exploit a lower pocket that is characteristic for the class IIa HDACs, not present in other HDAC classes.

View Article and Find Full Text PDF

Tropical forests have high rates of soil carbon cycling, but little information is available on how roots, arbuscular mycorrhizal fungi (AMF), and free-living microorganisms interact and influence organic matter mineralization in these ecosystems. We used mesh ingrowth cores and isotopic tracers in phospholipid fatty acid biomarkers to investigate the effects of roots and AMF mycelia on (1) microbial community composition, microbial carbon utilization, and hydrolytic enzyme activities for large, potted tropical trees and (2) enzyme activities and litter mass loss in a lowland tropical forest. Under the tropical tree, plant-derived carbon was incorporated predominantly into bacterial groups in both rhizosphere and AMF-only soils.

View Article and Find Full Text PDF

Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined.

View Article and Find Full Text PDF

Annual carbon flux through soil respiration is ten times greater than fossil fuel combustion, but its component parts are poorly understood because they are the product of complex multitrophic interactions between soil organisms. A major component of carbon flux from plants to soil occurs through networks of symbiotic arbuscular mycorrhizal fungi. Here, using 13CO2 pulse labeling, we show that natural densities of the numerically dominant fungal feeding invertebrate Protaphorura armata (order Collembola) reduces 13C enrichment of mycorrhizosphere respiration by 32%.

View Article and Find Full Text PDF

A methodology is described demonstrating the utility of the compound-specific 14C technique as a direct means of dating archaeological pottery. The method uses automated preparative capillary gas chromatography employing wide-bore capillary columns to isolate individual compounds from lipid extracts of archaeological potsherds in high purity (>95%) and amounts (>200 microg) sufficient for radiocarbon dating using accelerator mass spectrometry (AMS). A protocol was developed and tested on n-alkanes and n-carboxylic acids possessing a broad range of 14C ages.

View Article and Find Full Text PDF

We describe the development of a novel mobile field laboratory, purposely designed for the automated capture and subsequent stable isotopic analyses of multiple gas samples. The multiple capture system is integrated into a mobile laboratory that is fully capable of measuring the concentration of carbon dioxide, methane and nitrous oxide trace gases in a flow-through system connected to a gas chromatograph fitted with both electron capture and flame ionisation detectors. The capture of gases is achieved by routing samples through a series of 135 mL gas flasks that are sealed by micro-solenoid valves triggered by a timing system.

View Article and Find Full Text PDF

Animal fats are preserved at archaeological sites in association with unglazed pottery, human and animal remains, and other deposits or hoards. High-temperature gas chromatography (HT-GC) and combined HT-GC/mass spectrometry (HT-GC/MS) has confirmed the presence of animal fats in lipid extracts of artifacts. Degradation products and pathways have been discerned through the analyses of archaeological finds and the products of laboratory and field-based decay experiments.

View Article and Find Full Text PDF