Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood.
View Article and Find Full Text PDFThe authors wish to make the following corrections to their paper [...
View Article and Find Full Text PDFBotulinum neurotoxin type-A (BoNT-A) blocks the release of acetylcholine from peripheral cholinergic nerve terminals and is an important option for the treatment of disorders characterised by excessive cholinergic neuronal activity. Several BoNT-A products are currently marketed, each with unique manufacturing processes, excipients, formulation, and non-interchangeable potency units. Nevertheless, the effects of all the products are mediated by the 150 kDa BoNT-A neurotoxin.
View Article and Find Full Text PDFBotulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics.
View Article and Find Full Text PDFThe guanidinium-denatured state of the N-domain of phosphoglycerate kinase (PGK) has been characterized using solution NMR. Rather than behaving as a homogenous ensemble of random coils, chemical shift changes for the majority of backbone amide resonances indicate that the denatured ensemble undergoes two definable equilibrium transitions upon titration with guanidinium, in addition to the major refolding event. (13)C and (15)N chemical shift changes indicate that both intermediary states have distinct helical character.
View Article and Find Full Text PDF