98% of T cells reside in tissues, yet nearly all human T cell analyses are performed from peripheral blood. We single-cell sequenced 5.7 million T cells from ten donors' autologous blood and tonsils and sought to answer key questions about T cell receptor biology previously unanswerable by smaller-scale experiments.
View Article and Find Full Text PDFHighly effective vaccines elicit specific, robust, and durable adaptive immune responses. To advance informed vaccine design, it is critical that we understand the cellular dynamics underlying responses to different antigen formats. Here, we sought to understand how antigen-specific B and T cells were activated and participated in adaptive immune responses within the mucosal site.
View Article and Find Full Text PDFMacrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages.
View Article and Find Full Text PDFThe monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages.
View Article and Find Full Text PDF