The analysis of extensive electronic health records (EHR) datasets often calls for automated solutions, with machine learning (ML) techniques, including deep learning (DL), taking a lead role. One common task involves categorizing EHR data into predefined groups. However, the vulnerability of EHRs to noise and errors stemming from data collection processes, as well as potential human labeling errors, poses a significant risk.
View Article and Find Full Text PDFCollaborative efforts in artificial intelligence (AI) are increasingly common between high-income countries (HICs) and low- to middle-income countries (LMICs). Given the resource limitations often encountered by LMICs, collaboration becomes crucial for pooling resources, expertise, and knowledge. Despite the apparent advantages, ensuring the fairness and equity of these collaborative models is essential, especially considering the distinct differences between LMIC and HIC hospitals.
View Article and Find Full Text PDFUnlabelled: With the rapid growth of memory and computing power, datasets are becoming increasingly complex and imbalanced. This is especially severe in the context of clinical data, where there may be one rare event for many cases in the majority class. We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets, and extend it for use in multi-class settings.
View Article and Find Full Text PDFArtificial intelligence (AI) solutions for skin cancer diagnosis continue to gain momentum, edging closer towards broad clinical use. These AI models, particularly deep-learning architectures, require large digital image datasets for development. This review provides an overview of the datasets used to develop AI algorithms and highlights the importance of dataset transparency for the evaluation of algorithm generalizability across varying populations and settings.
View Article and Find Full Text PDFBackground: Multicentre training could reduce biases in medical artificial intelligence (AI); however, ethical, legal, and technical considerations can constrain the ability of hospitals to share data. Federated learning enables institutions to participate in algorithm development while retaining custody of their data but uptake in hospitals has been limited, possibly as deployment requires specialist software and technical expertise at each site. We previously developed an artificial intelligence-driven screening test for COVID-19 in emergency departments, known as CURIAL-Lab, which uses vital signs and blood tests that are routinely available within 1 h of a patient's arrival.
View Article and Find Full Text PDFAs models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framework capable of mitigating biases that may have been acquired during data collection. In particular, we evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments and aimed to mitigate any site (hospital)-specific and ethnicity-based biases present in the data.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2022
Early detection of COVID-19 is an ongoing area of research that can help with triage, monitoring and general health assessment of potential patients and may reduce operational strain on hospitals that cope with the coronavirus pandemic. Different machine learning techniques have been used in the literature to detect potential cases of coronavirus using routine clinical data (blood tests, and vital signs measurements). Data breaches and information leakage when using these models can bring reputational damage and cause legal issues for hospitals.
View Article and Find Full Text PDFMachine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how these tools may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating biases that may have been acquired through data collection.
View Article and Find Full Text PDFAs patient health information is highly regulated due to privacy concerns, most machine learning (ML)-based healthcare studies are unable to test on external patient cohorts, resulting in a gap between locally reported model performance and cross-site generalizability. Different approaches have been introduced for developing models across multiple clinical sites, however less attention has been given to adopting ready-made models in new settings. We introduce three methods to do this-(1) applying a ready-made model "as-is" (2); readjusting the decision threshold on the model's output using site-specific data and (3); finetuning the model using site-specific data via transfer learning.
View Article and Find Full Text PDFBackground: Uncertainty in patients' COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12-24 h and lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage (CURIAL-1.
View Article and Find Full Text PDFCOVID-19 is a major, urgent, and ongoing threat to global health. Globally more than 24 million have been infected and the disease has claimed more than a million lives as of November 2020. Predicting which patients will need respiratory support is important to guiding individual patient treatment and also to ensuring sufficient resources are available.
View Article and Find Full Text PDFBackground: The early clinical course of COVID-19 can be difficult to distinguish from other illnesses driving presentation to hospital. However, viral-specific PCR testing has limited sensitivity and results can take up to 72 h for operational reasons. We aimed to develop and validate two early-detection models for COVID-19, screening for the disease among patients attending the emergency department and the subset being admitted to hospital, using routinely collected health-care data (laboratory tests, blood gas measurements, and vital signs).
View Article and Find Full Text PDFIn human visual processing, information from the visual field passes through numerous transformations before perceptual attributes such as colour are derived. The sequence of transforms involved in constructing perceptions of colour can be approximated by colour appearance models such as the CIE (2002) colour appearance model, abbreviated as CIECAM02. In this study, we test the plausibility of CIECAM02 as a model of colour processing by looking for evidence of its cortical entrainment.
View Article and Find Full Text PDFDescribing the human brain in mathematical terms is an important ambition of neuroscience research, yet the challenges remain considerable. It was Alan Turing, writing in 1950, who first sought to demonstrate how time-consuming such an undertaking would be. Through analogy to the computer program, Turing argued that arriving at a complete mathematical description of the mind would take well over a thousand years.
View Article and Find Full Text PDF