Publications by authors named "Andrew Skowno"

Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.

View Article and Find Full Text PDF

The Kunming-Montreal Global Biodiversity Framework (GBF) of the UN Convention on Biological Diversity set the agenda for global aspirations and action to reverse biodiversity loss. The GBF includes an explicit goal for maintaining and restoring biodiversity, encompassing ecosystems, species and genetic diversity (goal A), targets for ecosystem protection and restoration and headline indicators to track progress and guide action. One of the headline indicators is the Red List of Ecosystems, the global standard for ecosystem risk assessment.

View Article and Find Full Text PDF

Protected and conserved areas (PCAs) are key ecosystem management tools for conserving biodiversity and sustaining ecosystem services and social cobenefits. As countries adopt a 30% target for protection of land and sea under the Global Biodiversity Framework of the United Nations Convention on Biological Diversity, a critical question emerging is, which 30%? A risk-based answer to this question is that the 30% that returns the greatest reductions in risks of species extinction and ecosystem collapse should be protected. The International Union for Conservation of Nature (IUCN) Red List protocols provide practical methods for assessing these risks.

View Article and Find Full Text PDF

The updating and rethinking of vegetation classifications is important for ecosystem monitoring in a rapidly changing world, where the distribution of vegetation is changing. The general assumption that discrete and persistent plant communities exist that can be monitored efficiently, is rarely tested before undertaking a classification. Marion Island (MI) is comprised of species-poor vegetation undergoing rapid environmental change.

View Article and Find Full Text PDF

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress.

View Article and Find Full Text PDF
Article Synopsis
  • The post-2020 Global Biodiversity Framework aims to stabilize and restore species status, justifying the need for a scalable metric to measure the impact of conservation actions globally.
  • The STAR (species threat abatement and restoration) metric assesses how targeted actions like habitat restoration and threat reduction can reduce extinction risks, showing significant contributions from sustainable agriculture and forestry.
  • Countries like Indonesia and Brazil hold significant responsibility for biodiversity, as they manage over 31% of the STAR values for key species, while Key Biodiversity Areas, though only 9% of land, represent nearly half of these values.
View Article and Find Full Text PDF

A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5-10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be "simple" (amenable to solutions from science alone), "complicated" (socially agreed upon but technically complicated), "complex" (scientifically challenging and significant levels of social disagreement) or "chaotic" (high social disagreement and highly scientifically challenging).

View Article and Find Full Text PDF

Systematic conservation planning is intended to inform spatially explicit decision making. Doing so requires that it be integrated into complex regulatory and governance processes, and there are limited instances where this has been achieved effectively. South Africa is a global leader in the application of conservation plans, the outputs of which are widely used for spatial planning and decision making in many spheres of government.

View Article and Find Full Text PDF

In the Anthropocene, alien species are no longer the only category of biological organism establishing and rapidly spreading beyond historical boundaries. We review evidence showing that invasions by native species are a global phenomenon and present case studies from Southern Africa, and elsewhere, that reveal how climate-mediated expansions of native plants into adjacent communities can emulate the functional and structural changes associated with invasions by alien plant species. We conclude that integrating native invasions into ecological practice and theory will improve mechanistic models and better inform policy and adaptive ecological management in the 21st century.

View Article and Find Full Text PDF

Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes.

View Article and Find Full Text PDF