Publications by authors named "Andrew Skora"

Article Synopsis
  • CAR T cells are showing great potential as cancer treatments, but their effectiveness is limited by a lack of specific tumor-targeting antigens.
  • Researchers have developed a new CAR that targets the isocitrate dehydrogenase 2 (IDH2) mutation (R140Q) found on cancer cells, combined with a human leukocyte antigen (HLA) called HLA-B*07:02.
  • By optimizing the CAR’s design, this new therapy could improve the ability to target and treat cancers associated with other hard-to-reach mutations.
View Article and Find Full Text PDF
Article Synopsis
  • Tumor protein p53 is a frequently mutated cancer driver gene, but effective drugs targeting these mutations are currently unavailable.
  • Researchers developed a highly specific antibody for the common R175H mutation in p53 and its interaction with a specific human leukocyte antigen (HLA-A).
  • This antibody was transformed into a bispecific single-chain diabody, which successfully activated T cells to kill cancer cells in lab settings and mouse models, offering a promising new strategy for targeting hard-to-treat tumors.
View Article and Find Full Text PDF

Mutations in the oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively.

View Article and Find Full Text PDF

Mutations in , the gene encoding β-catenin, are common in colon and liver cancers, the most frequent mutation affecting Ser-45 in β-catenin. Peptides derived from WT β-catenin have previously been shown to be presented on the cell surface as part of major histocompatibility complex (MHC) class I, suggesting an opportunity for targeting this common driver gene mutation with antibody-based therapies. Here, crystal structures of both the WT and S45F mutant peptide bound to HLA-A*03:01 at 2.

View Article and Find Full Text PDF

The Drosophila melanogaster ovarian follicle cell lineage provides a powerful system for investigating how epigenetic changes contribute to differentiation. Downstream from an epithelial stem cell, follicle progenitors undergo nine mitotic cell cycles before transitioning to the endocycle and initiating differentiation. During their proliferative phase, follicle progenitors experience Lsd1-dependent changes in epigenetic stability that can be monitored using GAL4::UAS variegation.

View Article and Find Full Text PDF

Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We here describe an approach to identify single-chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by HLA molecules. We demonstrate that these scFvs can be successfully converted to full-length antibodies, termed MANAbodies, targeting "Mutation-Associated Neo-Antigens" bound to HLA.

View Article and Find Full Text PDF

Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation.

View Article and Find Full Text PDF

Background: Somatic mutations have the potential to encode "non-self" immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade.

Methods: We conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti-programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency.

View Article and Find Full Text PDF

Impressive responses have been observed in patients treated with checkpoint inhibitory anti-programmed cell death-1 (PD-1) or anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) antibodies. However, immunotherapy against poorly immunogenic cancers remains a challenge. Here we report that treatment with both anti-PD-1 and anti-CTLA-4 antibodies was unable to eradicate large, modestly immunogenic CT26 tumors or metastatic 4T1 tumors.

View Article and Find Full Text PDF

Autoimmune diseases are thought to be initiated by exposures to foreign antigens that cross-react with endogenous molecules. Scleroderma is an autoimmune connective tissue disease in which patients make antibodies to a limited group of autoantigens, including RPC1, encoded by the POLR3A gene. As patients with scleroderma and antibodies against RPC1 are at increased risk for cancer, we hypothesized that the "foreign" antigens in this autoimmune disease are encoded by somatically mutated genes in the patients' incipient cancers.

View Article and Find Full Text PDF

Stem and embryonic cells facilitate programming toward multiple daughter cell fates, whereas differentiated cells resist reprogramming and oncogenic transformation. How alterations in the chromatin-based machinery of epigenetic inheritance contribute to these differences remains poorly known. We observed random, heritable changes in GAL4/UAS transgene programming during Drosophila ovarian follicle stem cell differentiation and used them to measure the stage-specific epigenetic stability of gene programming.

View Article and Find Full Text PDF

Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection.

View Article and Find Full Text PDF

The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally noncentromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization.

View Article and Find Full Text PDF