Publications by authors named "Andrew Sharpley"

A legacy of using P fertilizers on grazed pastures has been enhanced soil fertility and an associated increased risk of P loss in runoff. Rainfall simulation has been extensively used to develop relationships between soil test P (STP) and dissolved P (DP) in runoff as part of modeling efforts scrutinizing the impact of legacy P. This review examines the applicability of rainfall simulation to draw inferences related to legacy P.

View Article and Find Full Text PDF

With more than 40 countries currently proposing to boost their national bioeconomies, there is no better time for a clarion call for a "new" bioeconomy, which, at its core, tackles the current disparities and inequalities in phosphorus (P) availability. Existing biofuel production systems have widened P inequalities and contributed to a linear P economy, impairing water quality and accelerating dependence on P fertilizers manufactured from finite nonrenewable phosphate rock reserves. Here, we explore how the emerging bioeconomy in novel, value-added, bio-based products offers opportunities to rethink our stewardship of P.

View Article and Find Full Text PDF

After its discovery in 1669, phosphorus (P) was named ("the miraculous bearer of light"), arising from the chemoluminescence when white P is exposed to the atmosphere. The metaphoric association between P and light resonates through history: from the discovery of P at the start of the Enlightenment period to the vital role of P in photosynthetic capture of light in crop and food production through to new technologies, which seek to capitalize on the interactions between novel ultrathin P allotropes and light, including photocatalysis, solar energy production, and storage. In this introduction to the special section "Celebrating the 350th Anniversary of Discovering Phosphorus-For Better or Worse," which brings together 22 paper contributions, we shine a spotlight on the historical and emerging challenges and opportunities in research and understanding of the agricultural, environmental, and societal significance of this vital element.

View Article and Find Full Text PDF

Computer models are commonly used for predicting risks of runoff P loss from agricultural fields by enabling simulation of various management practices and climatic scenarios. For P loss models to be useful tools, however, they must accurately predict P loss for a wide range of climatic, physiographic, and land management conditions. A complicating factor in developing and evaluating P loss models is the relative scarcity of available measured field data that adequately capture P losses before and after implementing management practices in a variety of physiographic settings.

View Article and Find Full Text PDF

Instream biogeochemical process measurements are often short-term and localized. Here we use in situ sensors to quantify the net effects of biogeochemical processes on seasonal patterns in baseflow nitrate retention at the river-reach scale. Dual-station high-frequency in situ nitrate measurements, were coupled with high-frequency measurements of stream metabolism and dissolved inorganic carbon, in a tributary of the Buffalo National River, Arkansas.

View Article and Find Full Text PDF

2019 will be the 350th anniversary of the discovery of phosphorus (P) by the alchemist Henning Brandt. This perspective traces the historical threads that P has weaved through the fabric of our society and identifies challenges to improve P stewardship in the future and for our future. A century after Brandt's discovery, P was identified in bone ash, which became the primary source of P until guano and ultimately rock P was mined to provide the various mineral formulations used today.

View Article and Find Full Text PDF

Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions.

View Article and Find Full Text PDF

Phosphorus (P) Indices in the southern United States frequently produce different recommendations for similar conditions. We compared risk ratings from 12 southern states (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, and Texas) using data collected from benchmark sites in the South (Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, and Texas). Phosphorus Index ratings were developed using both measured erosion losses from each benchmark site and Revised Universal Soil Loss Equation 2 predictions; mostly, there was no difference in P Index outcome.

View Article and Find Full Text PDF

The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System.

View Article and Find Full Text PDF

The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia.

View Article and Find Full Text PDF

A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States.

View Article and Find Full Text PDF

Critical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the United States, yet there has been only sparse testing of the many versions of the P Index that now exist. Each P site assessment tool was developed to be applicable across a range of field conditions found in a given geographic area, making evaluation extremely difficult. In general, evaluation with in-field monitoring data has been limited, focusing primarily on corroborating manure and fertilizer "source" factors.

View Article and Find Full Text PDF
Article Synopsis
  • Significant increase in riverine soluble reactive phosphorus (SRP) loads to the Western Lake Erie Basin from three key rivers began in the early 2000s and has persisted over the last 12 years.
  • About 65% of this SRP load increase is due to elevated SRP delivery, while 35% is linked to higher runoff from changing weather patterns.
  • Long-term changes in agricultural practices, like reduced tillage and increased tile drainage, may have inadvertently led to higher SRP levels by promoting labile phosphorus fractions and enhancing soluble P transport.
View Article and Find Full Text PDF

We make the case that phosphorus (P) is inextricably linked to an increasingly fragile, interconnected, and interdependent nexus of water, energy, and food security and should be managed accordingly. Although there are many other drivers that influence water, energy, and food security, P plays a unique and under-recognized role within the nexus. The P paradox derives from fundamental challenges in meeting water, energy, and food security for a growing global population.

View Article and Find Full Text PDF

Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.

View Article and Find Full Text PDF

The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P).

View Article and Find Full Text PDF

Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation.

View Article and Find Full Text PDF

The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss.

View Article and Find Full Text PDF

The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture.

View Article and Find Full Text PDF

Karst landscapes are often perceived as highly vulnerable to agricultural phosphorus (P) loss, via solution-enlarged conduits that bypass P retention processes. Although attenuation of P concentrations has been widely reported within karst drainage, the extent to which this results from hydrological dilution, rather than P retention, is poorly understood. This is of strategic importance for understanding the resilience of karst landscapes to P inputs, given increasing pressures for intensified agricultural production.

View Article and Find Full Text PDF

The water quality response to implementation of conservation measures across watersheds has been slower and smaller than expected. This has led many to question the efficacy of these measures and to call for stricter land and nutrient management strategies. In many cases, this limited response has been due to the legacies of past management activities, where sinks and stores of P along the land-freshwater continuum mask the effects of reductions in edge-of-field losses of P.

View Article and Find Full Text PDF

Continuous application of poultry litter (PL) significantly changes many soil properties, including soil test P (STP); Al, Fe, and Ca concentrations; and pH, which can affect the potential for P transport in surface runoff water. We conducted rainfall simulations on three historically acidic silt loam soils in Arkansas, Missouri, and Virginia to establish if long-term PL applications would affect soil inorganic P fractions and the resulting dissolved reactive P (DRP) in runoff water. Soil samples (0-5 cm depth) were taken to find sites ranging in Mehlich-3 STP from 20 to 1154 mg P kg.

View Article and Find Full Text PDF

This commentary examines an "inconvenient truth" that phosphorus (P)-based nutrient mitigation, long regarded as the key tool in eutrophication management, in many cases has not yet yielded the desired reductions in water quality and nuisance algal growth in rivers and their associated downstream ecosystems. We examine why the water quality and aquatic ecology have not recovered, in some case after two decades or more of reduced P inputs, including (i) legacies of past land-use management, (ii) decoupling of algal growth responses to river P loading in eutrophically impaired rivers; and (iii) recovery trajectories, which may be nonlinear and characterized by thresholds and alternative stable states. It is possible that baselines have shifted and that some disturbed river environments may never return to predisturbance conditions or may require P reductions below those that originally triggered ecological degradation.

View Article and Find Full Text PDF