Chronic kidney disease (CKD) is a complication of diabetes that affects circulating drug concentrations and elimination of drugs from the body. Multiple drugs may be prescribed for treatment of diabetes and co-morbidities, and CKD complicates the pharmacotherapy selection and dosing regimen. Characterizing variations in renal drug clearance using models requires large clinical datasets that are costly and time-consuming to collect.
View Article and Find Full Text PDFBackground: closed-loop control of glucose levels in people with type 1 diabetes mellitus (T1D) is limited by the requirements on users to manually announce physical activity (PA) and meals to the artificial pancreas system. Multivariable automated insulin delivery (mvAID) systems that can handle unannounced PAs and meals without any manual announcements by the user can improve glycemic control by modulating insulin dosing in response to the occurrence and intensity of spontaneous physical activities.
Methods: An mvAID system is developed to supplement the glucose measurements with additional physiological signals from a wristband device, with the signals analyzed using artificial intelligence algorithms to automatically detect the occurrence of PA and estimate its intensity.
Objective: Interpretation of time series data collected in free-living has gained importance in chronic disease management. Some data are collected objectively from sensors and some are estimated and entered by the individual. In type 1 diabetes (T1D), blood glucose concentration (BGC) data measured by continuous glucose monitoring (CGM) systems and insulin doses administered can be used to detect the occurrences of meals and physical activities and generate the personal daily living patterns for use in automated insulin delivery (AID).
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2022
Background And Objective: The glucose response to physical activity for a person with type 1 diabetes (T1D) depends upon the intensity and duration of the physical activity, plasma insulin concentrations, and the individual physical fitness level. To accurately model the glycemic response to physical activity, these factors must be considered.
Methods: Several physiological models describing the glycemic response to physical activity are proposed by incorporating model terms proportional to the physical activity intensity and duration describing endogenous glucose production (EGP), glucose utilization, and glucose transfer from the plasma to tissues.
Background: Predicting carbohydrate intake and physical activity in people with diabetes is crucial for improving blood glucose concentration regulation. Patterns of individual behavior can be detected from historical free-living data to predict meal and exercise times. Data collected in free-living may have missing values and forgotten manual entries.
View Article and Find Full Text PDFMany data-driven modeling techniques identify locally valid, linear representations of time-varying or nonlinear systems, and thus the model parameters must be adaptively updated as the operating conditions of the system vary, though the model identification typically does not consider prior knowledge. In this work, we propose a new regularized partial least squares (rPLS) algorithm that incorporates prior knowledge in the model identification and can handle missing data in the independent covariates. This latent variable (LV) based modeling technique consists of three steps.
View Article and Find Full Text PDF