Publications by authors named "Andrew Sczesnak"

Peripheral spondyloarthritis (SpA) is a common extraintestinal manifestation in patients with active inflammatory bowel disease (IBD) characterized by inflammatory enthesitis, dactylitis, or synovitis of nonaxial joints. However, a mechanistic understanding of the link between intestinal inflammation and SpA has yet to emerge. We evaluated and functionally characterized the fecal microbiome of IBD patients with or without peripheral SpA.

View Article and Find Full Text PDF

Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate.

View Article and Find Full Text PDF

We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance.

View Article and Find Full Text PDF

T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease, caused by a combination of genetic and environmental factors. Animal models suggest a role for intestinal bacteria in supporting the systemic immune response required for joint inflammation. Here we performed 16S sequencing on 114 stool samples from rheumatoid arthritis patients and controls, and shotgun sequencing on a subset of 44 such samples.

View Article and Find Full Text PDF

Perturbations of the composition of the symbiotic intestinal microbiota can have profound consequences for host metabolism and immunity. In mice, segmented filamentous bacteria (SFB) direct the accumulation of potentially proinflammatory Th17 cells in the intestinal lamina propria. We present the genome sequence of SFB isolated from monocolonized mice, which classifies SFB phylogenetically as a unique member of Clostridiales with a highly reduced genome.

View Article and Find Full Text PDF