Publications by authors named "Andrew Schuldenfrei"

Context: Although pancreatic cancer is a common, highly lethal malignancy, the molecular events that enable precursor lesions to become invasive carcinoma remain unclear. We previously reported that the high-mobility group A1 (HMGA1) protein is overexpressed in >90% of primary pancreatic cancers, with absent or low levels in early precursor lesions.

Methods: Here, we investigate the role of HMGA1 in reprogramming pancreatic epithelium into invasive cancer cells.

View Article and Find Full Text PDF

Background: Although the high mobility group A1 (HMGA1) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. HMGA1 functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, HMGA1 is thought to drive malignant transformation by modulating expression of specific genes.

View Article and Find Full Text PDF

Although pancreatic ductal adenocarcinoma is a common and almost uniformly fatal cancer, little is known about the molecular events that lead to tumor progression. The high-mobility group A1 (HMGA1) protein is an architectural transcription factor that has been implicated in the pathogenesis and progression of diverse human cancers, including pancreatic ductal adenocarcinoma. In this study, we investigated HMGA1 expression in pancreatic ductal adenocarcinoma cell lines and surgically resected tumors to determine whether it could be a marker for more advanced disease.

View Article and Find Full Text PDF

Although previous studies have established a prominent role for HMGA1 (formerly HMG-I/Y) in aggressive human cancers, the role of HMGA2 (formerly HMGI-C) in malignant transformation has not been clearly defined. The HMGA gene family includes HMGA1, which encodes the HMGA1a and HMGA1b protein isoforms, and HMGA2, which encodes HMGA2. These chromatin-binding proteins function in transcriptional regulation and recent studies also suggest a role in cellular senescence.

View Article and Find Full Text PDF