Background: Histologic evaluation of the mucosal changes associated with celiac disease is important for establishing an accurate diagnosis and monitoring the impact of investigational therapies. While the Marsh-Oberhuber classification has been used to categorize the histologic findings into discrete stages (i.e.
View Article and Find Full Text PDFFormalin-fixed, paraffin-embedded tissues represent a majority of all biopsy specimens commonly analyzed by histologic or immunohistochemical staining with adhesive coverslips attached. Mass spectrometry (MS) has recently been used to precisely quantify proteins in samples consisting of multiple unstained formalin-fixed, paraffin-embedded sections. Here, we report an MS method to analyze proteins from a single coverslipped 4-μm section previously stained with hematoxylin and eosin, Masson trichrome, or 3,3'-diaminobenzidine-based immunohistochemical staining.
View Article and Find Full Text PDFBackground: Based on interim analyses and modeling data, lower doses of bamlanivimab and etesevimab together (700/1400 mg) were investigated to determine optimal dose and expand availability of treatment.
Methods: This Phase 3 portion of the BLAZE-1 trial characterized the effect of bamlanivimab with etesevimab on overall patient clinical status and virologic outcomes in ambulatory patients ≥12 years old, with mild-to-moderate coronavirus disease 2019 (COVID-19), and ≥1 risk factor for progressing to severe COVID-19 and/or hospitalization. Bamlanivimab and etesevimab together (700/1400 mg) or placebo were infused intravenously within 3 days of patients' first positive COVID-19 test.
Background: Patients with underlying medical conditions are at increased risk for severe coronavirus disease 2019 (Covid-19). Whereas vaccine-derived immunity develops over time, neutralizing monoclonal-antibody treatment provides immediate, passive immunity and may limit disease progression and complications.
Methods: In this phase 3 trial, we randomly assigned, in a 1:1 ratio, a cohort of ambulatory patients with mild or moderate Covid-19 who were at high risk for progression to severe disease to receive a single intravenous infusion of either a neutralizing monoclonal-antibody combination agent (2800 mg of bamlanivimab and 2800 mg of etesevimab, administered together) or placebo within 3 days after a laboratory diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Context.—: RET gene fusions are oncogenic drivers in nonsmall cell lung cancer and nonmedullary thyroid cancer. Selpercatinib (RETEVMO), a targeted inhibitor of RET, was approved by the US Food and Drug Administration for the treatment of RET fusion-positive nonsmall cell lung cancer and nonmedullary thyroid cancer emphasizing the need for rapid and accurate diagnosis of RET fusions.
View Article and Find Full Text PDFImportance: Preventive interventions are needed to protect residents and staff of skilled nursing and assisted living facilities from COVID-19 during outbreaks in their facilities. Bamlanivimab, a neutralizing monoclonal antibody against SARS-CoV-2, may confer rapid protection from SARS-CoV-2 infection and COVID-19.
Objective: To determine the effect of bamlanivimab on the incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities.
Importance: Coronavirus disease 2019 (COVID-19) continues to spread rapidly worldwide. Neutralizing antibodies are a potential treatment for COVID-19.
Objective: To determine the effect of bamlanivimab monotherapy and combination therapy with bamlanivimab and etesevimab on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in mild to moderate COVID-19.
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (Covid-19), which is most frequently mild yet can be severe and life-threatening. Virus-neutralizing monoclonal antibodies are predicted to reduce viral load, ameliorate symptoms, and prevent hospitalization.
Methods: In this ongoing phase 2 trial involving outpatients with recently diagnosed mild or moderate Covid-19, we randomly assigned 452 patients to receive a single intravenous infusion of neutralizing antibody LY-CoV555 in one of three doses (700 mg, 2800 mg, or 7000 mg) or placebo and evaluated the quantitative virologic end points and clinical outcomes.
New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of non-small cell lung cancer (NSCLC), but protein level quantitation of drug targets presents a critical problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target proteins PD-1, PD-L1, PD-L2, IDO1, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 in formalin-fixed, paraffin-embedded (FFPE) NSCLC specimens. Immunohistochemistry (IHC) and MS measurements for PD-L1 were weakly correlated, but IHC did not distinguish protein abundance differences detected by MS.
View Article and Find Full Text PDFImmunohistochemistry (IHC) using formalin-fixed, paraffin embedded (FFPE) tissue is limited by epitope masking, posttranslational modification and immunoreactivity loss that occurs in stored tissue by poorly characterized mechanisms. Conformational epitopes recognized by many programmed-death-ligand-1 (PD-L1) IHC assays are particularly susceptible to degradation and provide an ideal model for understanding signal loss in stored FFPE tissue. Here we assessed 1206 tissue sections to evaluate environmental factors impacting immunoreactivity loss.
View Article and Find Full Text PDFContext.—: Cancer immunotherapy provides unprecedented rates of durable clinical benefit to late-stage cancer patients across many tumor types, but there remains a critical need for biomarkers to accurately predict clinical response. Although some cancer immunotherapy tests are associated with approved therapies and considered validated, other biomarkers are still emerging and at various states of clinical and translational exploration.
View Article and Find Full Text PDFMutations in ERK signaling drive a significant percentage of malignancies. LY3009120, a pan-RAF and dimer inhibitor, has preclinical activity in - and -mutated cell lines including -mutant melanoma resistant to BRAF inhibitors. This multicenter, open-label, phase I clinical trial (NCT02014116) consisted of part A (dose escalation) and part B (dose confirmation) in patients with advanced/metastatic cancer.
View Article and Find Full Text PDFBiospecimens acquired during routine medical practice are the primary sources of molecular information about patients and their diseases that underlies precision medicine and translational research. In cancer care, molecular analysis of biospecimens is especially common because it often determines treatment choices and may be used to monitor therapy in real time. However, patient specimens are collected, handled, and processed according to routine clinical procedures during which they are subjected to factors that may alter their molecular quality and composition.
View Article and Find Full Text PDFBackground: Clinically relevant predictive biomarkers to tailor anti-angiogenic therapies to breast cancer (BRC) patient subpopulations are an unmet need.
Methods: We analyzed tumor vascular density and VEGFR2 protein expression in various subsets of primary human BRCs (186 females; Mean age: 59 years; range 33-88 years), using a tissue microarray. Discrete VEGFR2+ and CD34+ tumor vessels were manually scored in invasive ductal, lobular, mixed ductal-lobular and colloid (N = 139, 22, 18, 7) BRC cores.
Aberrant regulation of the receptor tyrosine kinase platelet-derived growth factor alpha (PDGFRα) is implicated in several types of cancer. Inhibition of the PDGFRα pathway may be a beneficial therapy, and detection of PDGFRα in tumor biopsies may lead to insights about which patients respond to therapy. Exploratory or clinical biomarker use of PDGFRα IHC has been frequently reported, often with polyclonal antibody sc-338.
View Article and Find Full Text PDFBackground: the vascular endothelial growth factor (VEGF) pathway plays a prominent role in the growth and progression of human cancer, including non-small cell lung carcinoma (NSCLC). The key mediators of VEGF signaling are a family of related receptor tyrosine kinases that include VEGFR1, VEGFR2, and VEGFR3. The relative expression levels, activity, and cross-talk among these receptors may contribute to response of NSCLC to anti-angiogenic therapies, and a better systematic, translatable approach to categorizing tumors is needed.
View Article and Find Full Text PDFBackground: The vascular endothelial growth factor (VEGF) pathway plays an important role in growth and progression of human cancer, including colorectal carcinomas (CRC). The key mediators of VEGF signaling are VEGFR1, VEGFR2, and VEGFR3, part of a family of related receptor tyrosine kinases. The relative expression, activity, or interplay among these receptors may determine the response of CRC patients to anti-angiogenic therapies.
View Article and Find Full Text PDFUnlabelled: We evaluated the safety, pharmacokinetic profile, pharmacodynamic effects, and antitumor activity of abemaciclib, an orally bioavailable inhibitor of cyclin-dependent kinases (CDK) 4 and 6, in a multicenter study including phase I dose escalation followed by tumor-specific cohorts for breast cancer, non-small cell lung cancer (NSCLC), glioblastoma, melanoma, and colorectal cancer. A total of 225 patients were enrolled: 33 in dose escalation and 192 in tumor-specific cohorts. Dose-limiting toxicity was grade 3 fatigue.
View Article and Find Full Text PDFAims: Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method.
View Article and Find Full Text PDFA robust immunohistochemical (IHC) assay for VEGFR2 was developed to investigate its utility for patient tailoring in clinical trials. The sensitivity, specificity, and selectivity of the IHC assay were established by siRNA knockdown, immunoblotting, mass spectrometry, and pre-absorption experiments. Characterization of the assay included screening a panel of multiple human cancer tissues and an independent cohort of non-small cell lung carcinoma (NSCLC, n = 118) characterized by TTF-1, p63, CK5/6, and CK7 IHC.
View Article and Find Full Text PDFThis manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development-analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI).
View Article and Find Full Text PDF