Publications by authors named "Andrew Salzwedel"

Exposure to maternal anxiety symptoms during infancy has been associated with difficulties in development and greater risk for developing anxiety later in life. Although previous studies have examined associations between prenatal maternal distress, infant brain development, and developmental outcomes, it is still largely unclear if there are associations between postnatal anxiety, infant brain development, and cognitive development in infancy. In this study, we used resting-state functional magnetic resonance imaging to examine the association between maternal anxiety symptoms and resting-state functional connectivity in the first year of life.

View Article and Find Full Text PDF

Different functional networks exhibit distinct longitudinal trajectories throughout development, but the timeline of the dynamics of functional connectivity across the whole brain remains to be elucidated. Here we used resting-state fMRI to investigate the development of voxel-level changes in functional connectivity across the first six years of life. Globally, we found that developmental changes in functional connectivity are nonlinear with more changes during the first postnatal year than the second, followed by most significant changes from ages 2-4 and from ages 4-6.

View Article and Find Full Text PDF

The presence of heterogeneity/subgroups in infants and older populations against single-domain brain or behavioral measures has been previously characterized. However, few attempts have been made to explore heterogeneity at the brain-behavior relationship level. Such a hypothesis posits that different subgroups of infants may possess qualitatively different brain-behavior relationships that could ultimately contribute to divergent developmental outcomes even with relatively similar brain phenotypes.

View Article and Find Full Text PDF

Prenatal drug exposure (PDE) is known to affect fetal brain development with documented long-term consequences. Most studies of PDE effects on the brain are based on animal models. In this study, based on a large sample of 133 human neonates and leveraging a novel linear mixed-effect model designed for intersubject variability analyses, we studied the effects of six prenatally exposed drugs (i.

View Article and Find Full Text PDF

The neural mechanisms associated with obesity have been extensively studied, but the impact of maternal obesity on fetal and neonatal brain development remains poorly understood. In this study of full-term neonates, we aimed to detect potential neonatal functional connectivity alterations associated with maternal adiposity, quantified via body-mass-index (BMI) and body-fat-mass (BFM) percentage, based on seed-based and graph theoretical analysis using resting-state fMRI data. Our results revealed significant neonatal functional connectivity alterations in all four functional domains that are implicated in adult obesity: sensory cue processing, reward processing, cognitive control, and motor control.

View Article and Find Full Text PDF

Recently, there has been a surge of interest in the possibility that microbial communities inhabiting the human gut could affect cognitive development and increase risk for mental illness via the "microbiome-gut-brain axis." Infancy likely represents a critical period for the establishment of these relationships, as it is the most dynamic stage of postnatal brain development and a key period in the maturation of the microbiome. Indeed, recent reports indicate that characteristics of the infant gut microbiome are associated with both temperament and cognitive performance.

View Article and Find Full Text PDF

Background: The amygdala represents a core node in the human brain's emotional signal processing circuitry. Given its critical role, both the typical and atypical functional connectivity patterns of the amygdala have been extensively studied in adults. However, the development of amygdala functional connectivity during infancy is less well studied; thus, our understanding of the normal growth trajectory of key emotion-related brain circuits during a critical period is limited.

View Article and Find Full Text PDF

The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived.

View Article and Find Full Text PDF

The human brain undergoes extensive and dynamic growth during the first years of life. The UNC/UMN Baby Connectome Project (BCP), one of the Lifespan Connectome Projects funded by NIH, is an ongoing study jointly conducted by investigators at the University of North Carolina at Chapel Hill and the University of Minnesota. The primary objective of the BCP is to characterize brain and behavioral development in typically developing infants across the first 5 years of life.

View Article and Find Full Text PDF

Background: The use of functional connectivity magnetic resonance imaging (fcMRI) in research involving preterm infants is relatively new, and its feasibility in this population is not fully established. However, fcMRI images reveal functional neural connections that may be useful in establishing the mechanisms of neuroprotective interventions in preterm infants.

Objective: The aim of this study was to determine the feasibility of using fcMRI to measure differences in functional neural connections in nursing intervention studies.

View Article and Find Full Text PDF

Resting-state functional connectivity studies have dramatically improved our understanding of the early human brain functional development during the past decade. However, one emerging problem that could potentially impede future progresses in the field is the definition of regions of interest (ROI), since it is well known that functional connectivity estimation can be seriously contaminated by within-ROI signal heterogeneity. In this study, based on a large-scale rsfMRI data set in human infants (230 neonates, 143 1-year olds, and 107 2-year olds), we aimed to derive a set of anatomically constrained, infant-specific functional brain parcellations using functional connectivity-based clustering.

View Article and Find Full Text PDF

The hierarchical nature of the brain's functional organization has long been recognized, but when and how this architecture emerges during development remains largely unknown. Here the development of the brain's hierarchical organization was characterized using a modified stepwise functional connectivity approach based on resting-state fMRI in a fully longitudinal sample of infants (N = 28, with scans after birth, and at 1 and 2 years) and adults. Results obtained by placing seeds in early sensory cortices revealed novel hierarchical patterns of adult brain organization ultimately converging in limbic, paralimbic, basal ganglia, and frontoparietal brain regions.

View Article and Find Full Text PDF

The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei.

View Article and Find Full Text PDF

Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation.

View Article and Find Full Text PDF

Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.

View Article and Find Full Text PDF

Prenatal cocaine exposure (PCE) affects neurobehavioral development, however, disentangling direct drug-related mechanisms from contextual effects (e.g., socioeconomic status) has proven challenging in humans.

View Article and Find Full Text PDF

Prenatal marijuana exposure (PME) is linked to neurobehavioral and cognitive impairments; however, findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R) modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences.

View Article and Find Full Text PDF

Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm3nqa2o84vkgf8fskv3cii62v1isrs38): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once