Per- and polyfluoroalkyl substance (PFAS) contamination in aqueous matrices has intensified the search for PFAS adsorbents with elevated capacity, selectivity, and cost effectiveness. A novel surface modified organoclay (SMC) adsorbent was evaluated for PFAS removal performance in parallel with granular activated carbon (GAC) and ion exchange resin (IX) for the treatment of five distinct PFAS impaired waters including groundwater, landfill leachate, membrane concentrate and wastewater effluent. Rapid small scale column tests (RSSCTs) and breakthrough modeling were coupled to provide insight on adsorbent performance and cost for multiple PFAS and water types.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS), which are present in many waters, have detrimental impacts on human health and the environment. Reverse osmosis (RO) and nanofiltration (NF) have shown excellent PFAS separation performance in water treatment; however, these membrane systems do not destroy PFAS but produce concentrated residual streams that need to be managed. Complete destruction of PFAS in RO and NF concentrate streams is ideal, but long-term sequestration strategies are also employed.
View Article and Find Full Text PDF