Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-positive breast cancer cell lines.
View Article and Find Full Text PDFEngineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using "modular assembly" have been described, standardized reagents and protocols that permit rapid, cross-platform "mixing-and-matching" of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest.
View Article and Find Full Text PDFEngineered Cys2His2 zinc finger proteins (ZFPs) can mediate regulation of endogenous gene expression in mammalian cells. Ideally, all zinc fingers in an engineered multifinger protein should be optimized concurrently because cooperative and context-dependent contacts can affect DNA recognition. However, the simultaneous selection of key contacts in even three fingers from fully randomized libraries would require the consideration of >10(24) possible combinations.
View Article and Find Full Text PDF