An innovative family of tridentate-cationic "single-chained lipids" designed to enhance DNA compaction and to promote endosomal escape was synthesized by coupling various lipids to a multibranched scaffold. DNA retardation assays confirmed the ability of the most members of the library to complex DNA. Classical molecular dynamics simulations performed on the lauryl derivative, bound to a short strand of DNA in aqueous solution supported these observations.
View Article and Find Full Text PDFThe ultrafast rotational-diffusive dynamics of the peptide linkage model compounds N-methylacetamide (NMA), acetamide (Ac), and N,N-dimethylacetamide (DMA) have been studied as a function of temperature using optically heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy. Both NMA and Ac exhibit a non-Arrhenius temperature dependence of the rotational diffusive relaxation time. By contrast, the non-hydrogen-bonding DMA exhibits normal hydrodynamic behavior.
View Article and Find Full Text PDFA novel method has been developed to allow the accurate determination of equilibrium gas-phase structures from experimental data, thus allowing direct comparison with theory. This new method is illustrated through the example of sodium chloride vapor at 943 K. Using this approach the equilibrium structures of the monomer (NaCl) and the dimer (Na(2)Cl(2)), together with the fraction of vapor existing as dimer, have been determined by gas-phase electron diffraction supplemented with data from microwave spectroscopy and ab initio calculations.
View Article and Find Full Text PDFThe ultrafast dynamics of solutions of phenol and two phenol derivatives--hydroquinone (1,4-benzenediol) and pyrocatechol (1,2-benzenediol)--have been studied with Optically Heterodyne-Detected Optical Kerr-Effect (OHD-OKE) spectroscopy. The solvents, methanol and acetonitrile, were selected to provide strong and weak solvent-solute hydrogen-bonding interactions, respectively, while pyrocatechol features an intramolecular hydrogen bond. Together these provide a series of model systems for polypeptides such as polytyrosine, which facilitate the direct study of inter- and intramolecular hydrogen bonding.
View Article and Find Full Text PDFDimethylamine-gallane is relatively slow to decompose in a closed system and vaporises at low temperature primarily as Me2(H)N.GaH3 molecules which can be trapped in a solid Ar matrix and characterised by their IR spectrum. Under the conditions needed to secure a useful gas electron diffraction (GED) pattern, however, the vapour was found to consist of dimeric dimethylamidogallane molecules, [Me2NGaH2]2, formed from the secondary amine adduct by elimination of H2, and the most reliable structure for which has been determined.
View Article and Find Full Text PDFThe molecular structures of the three closo-carbaboranes, ortho-, meta- and para-C2B10H12, were experimentally determined using gas-phase electron diffraction (GED). All unique bond distances for ortho and meta carbaboranes were determined experimentally for the first time. For ortho-carbaborane (RG= 0.
View Article and Find Full Text PDFThe molecular structure of tetra-tert-butyldiphosphine has been determined in the gas phase by electron diffraction using the new DYNAMITE method and in the crystalline phase by X-ray diffraction. Ab initio methods were employed to gain a greater understanding of the structural preferences of this molecule in the gas phase, and to determine the intrinsic P-P bond energy, using recently described methods. Although the P-P bond is relatively long [GED 226.
View Article and Find Full Text PDF