Publications by authors named "Andrew R Marks"

Article Synopsis
  • Malignant hyperthermia (MH) is a serious genetic condition triggered by certain anesthetics, particularly affecting a protein called RyR1.
  • Dantrolene is the main treatment for MH, but how it works and where it binds on RyR1 was previously unclear.
  • This study used cryo-electron microscopy to detail how dantrolene and another agent bind to RyR1, revealing that dantrolene's binding requires ATP or ADP and can close the channel, highlighting its potential role in sensing energy levels in cells.
View Article and Find Full Text PDF

Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca leak, leading to arrhythmias and sudden cardiac death.

View Article and Find Full Text PDF
Article Synopsis
  • S100A1 is a small protein that helps control calcium levels in muscles, which is important for how they work.
  • Researchers studied how S100A1 attaches to a big calcium channel in muscle cells called the ryanodine receptor (RyR).
  • When calcium is present, S100A1 changes shape and sticks to RyR even more tightly, which could help scientists create new treatments for muscle diseases.
View Article and Find Full Text PDF

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health.

Methods: Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation.

View Article and Find Full Text PDF

Background: -related myopathies (-RM) are caused by pathogenic variants in the gene which encodes the type 1 ryanodine receptor (RyR1). RyR1 is the sarcoplasmic reticulum (SR) calcium release channel that mediates excitation-contraction coupling in skeletal muscle. RyR1 sub-conductance, SR calcium leak, reduced RyR1 expression, and oxidative stress often contribute to -RM pathogenesis.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM.

View Article and Find Full Text PDF

In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1).

View Article and Find Full Text PDF

Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca) handling, mitochondrial Ca overload, and oxidative stress.

View Article and Find Full Text PDF

Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca leakiness.

View Article and Find Full Text PDF

Background: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro.

View Article and Find Full Text PDF

Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca release channels were subjected to post-translational modification (PTM) and were leaky.

View Article and Find Full Text PDF

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage.

View Article and Find Full Text PDF

Summary: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization.

View Article and Find Full Text PDF

This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I-IV, with the most N-terminal domain involving residues 77-466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants.

View Article and Find Full Text PDF

Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.

View Article and Find Full Text PDF

The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders.

View Article and Find Full Text PDF

Patients with heart failure (HF) have augmented vascular tone, which increases cardiac workload, impairing ventricular output and promoting further myocardial dysfunction. The molecular mechanisms underlying the maladaptive vascular responses observed in HF are not fully understood. Vascular smooth muscle cells (VSMCs) control vasoconstriction via a Ca2+-dependent process, in which the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) on the sarcoplasmic reticulum (SR) plays a major role.

View Article and Find Full Text PDF

Introduction: The mechanisms that lead to cognitive impairment associated with COVID-19 are not well understood.

Methods: Brain lysates from control and COVID-19 patients were analyzed for oxidative stress and inflammatory signaling pathway markers, and measurements of Alzheimer's disease (AD)-linked signaling biochemistry. Post-translational modifications of the ryanodine receptor/calcium (Ca2 ) release channels (RyR) on the endoplasmic reticuli (ER), known to be linked to AD, were also measured by co-immunoprecipitation/immunoblotting of the brain lysates.

View Article and Find Full Text PDF

Sustained ryanodine receptor (RyR) Ca leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity.

View Article and Find Full Text PDF

The type 1 ryanodine receptor (RyR1) is an intracellular calcium (Ca) release channel on the sarcoplasmic/endoplasmic reticulum that is required for skeletal muscle contraction. RyR1 channel activity is modulated by ligands, including the activators Ca and ATP. Patients with inherited mutations in RyR1 may exhibit muscle weakness as part of a heterogeneous, complex disorder known as RYR1-related myopathy (RYR1-RM) or more recently termed RYR1-related disorders (RYR1-RD).

View Article and Find Full Text PDF

Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown.

View Article and Find Full Text PDF

The type 1 ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for skeletal muscle excitation-contraction coupling and is the largest known ion channel, composed of four 565-kDa protomers. Cryogenic electron microscopy (cryo-EM) studies of the RyR have primarily used detergent to solubilize the channel; in the present study, we have used cryo-EM to solve high-resolution structures of the channel in liposomes using a gel-filtration approach with on-column detergent removal to form liposomes and incorporate the channel simultaneously. This allowed us to resolve the structure of the channel in the primed and open states at 3.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: