This study presents the first evidence that a diverse suite of phycotoxins is not only being actively produced by the toxigenic algal communities in the Canadian Arctic waters, but is also entering the marine food web. We detected measurable amounts of Amnesic Shellfish Toxins (ASTs) and Paralytic Shellfish Toxins (PSTs), as well as trace amounts of other lipophilic toxin groups including pectenotoxins, yessotoxins, and cyclic imines, in bivalves collected from the Canadian Beaufort Sea in 2014 and 2018. There appear to be species-specific differences in accumulation and retention of AST by Arctic bivalves, with significantly higher concentrations recorded in Nuculanidae than Propeamussiidae, likely reflecting physiological and allometric differences.
View Article and Find Full Text PDFAccumulation of trimethylamine N-oxide (TMAO) by deep-sea animals is proposed to protect proteins against the destabilizing effects of high hydrostatic pressure (the piezolyte hypothesis). Chondrichthyan fishes (sharks, rays, and chimaeras) provide a unique test of this hypothesis because shallow-living species have elevated TMAO levels to counteract the destabilizing effects of high urea levels accumulated for osmoregulation. Limited interspecific studies of chondrichthyans reveal that increasing depth correlates with decreased urea and increased TMAO levels, suggesting a dynamic balance between destabilizing forces on proteins (high urea, hydrostatic pressure) and TMAO to counteract these forces.
View Article and Find Full Text PDFFor the past 9 years, we experimentally flooded a wetland complex (peatland surrounding an open water pond) at the Experimental Lakes Area (ELA), northwestern Ontario, Canada, to examine the biogeochemical cycling of methyl mercury (MeHg) in reservoirs. Using input-output budgets, we found that prior to flooding, the wetland complex was a net source of approximately 1.7 mg MeHg ha(-1) yr(-1) to downstream ecosystems.
View Article and Find Full Text PDF