Gibbsite (α-Al(OH)) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral () aluminate anions (Al(OH)) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires techniques that can distinguish Al in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously.
View Article and Find Full Text PDFAluminum hydroxide (Al(OH), gibbsite) dissolution and precipitation processes in alkaline environments play a commanding role in aluminum refining and nuclear waste processing, yet mechanistic aspects underlying sluggish kinetics during crystallization have remained obscured due to a lack of in situ probes capable of isolating incipient ion pairs. At a molecular level Al is cycling between tetrahedral ( T ) coordination in solution to octahedral ( O ) in the solid. We explored dissolution of Al(OH) that was used to produce variably saturated aluminate (Al(OH))-containing solutions under alkaline conditions (pH >13) with in situ Al magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy, and interrogated the results with ab initio molecular dynamics (AIMD) simulations complemented with chemical shift calculations.
View Article and Find Full Text PDFFe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component.
View Article and Find Full Text PDFWe report an in situ high-pressure NMR capability that permits natural abundance O and Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO fluid (scCO). The dissolution of Mg(OH) (brucite) in a multiphase water/scCO fluid at 90 atm pressure and 50 °C was studied in situ, with relevance to geological carbon sequestration. O NMR spectra allowed identification and distinction of various fluid species including dissolved CO in the HO-rich phase, scCO, aqueous HO, and HCO.
View Article and Find Full Text PDFMagnesite precipitation from aqueous solution, despite conditions of supersaturation, is kinetically hindered at low temperatures for reasons that remain poorly understood. The present study examines the products of Mg(OH)2 reaction in solutions saturated with supercritical CO2 at high pressures (90 and 110 atm) and low temperatures (35 and 50 °C). Solids characterization combined with in situ solution analysis reveal that the first reaction products are the hydrated carbonates hydromagnesite and nesquehonite, appearing simultaneously with brucite dissolution.
View Article and Find Full Text PDFContinental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR).
View Article and Find Full Text PDFThe speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times.
View Article and Find Full Text PDFThere is significant interest in the role of carbonate minerals for the storage of CO2 and the role of prenucleation clusters in their formation. Global minima for (MgCO3)n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO3)n (n < 5) are approximately 2-dimensional.
View Article and Find Full Text PDFAqueous metal ions play an important role in many areas of chemistry. The acidities of [Be(H2O)4](2+), [M(H2O)6](2+), M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and [M(H2O)n](2+), M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models.
View Article and Find Full Text PDFShale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar.
View Article and Find Full Text PDFA fully automated titration system with infrared detection was developed for investigating interfacial chemistry at high pressures. The apparatus consists of a high-pressure fluid generation and delivery system coupled to a high-pressure cell with infrared optics. A manifold of electronically actuated valves is used to direct pressurized fluids into the cell.
View Article and Find Full Text PDFGlobal minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional.
View Article and Find Full Text PDFAn ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales.
View Article and Find Full Text PDFThis study examines the nature of highly fragile reaction products that form in low water content supercritical carbon dioxide (scCO2) using a combination of focus ion beam/scanning electron microscopy, confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates are fragile rosettes. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases.
View Article and Find Full Text PDFHigh pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes.
View Article and Find Full Text PDFEnviron Sci Technol
November 2012
Time-dependent reduction of PuO(2)(am) was studied over a range of pH values in the presence of aqueous Fe(II) and magnetite (Fe(3)O(4)) nanoparticles. At early time frames (up to 56 days) very little aqueous Pu was mobilized from PuO(2)(am), even though measured pH and redox potentials, coupled to equilibrium thermodynamic modeling, indicated the potential for significant reduction of PuO(2)(am) to relatively soluble Pu(III). Introduction of Eu(III) or Nd(III) to the suspensions as competitive cations to displace possible sorbed Pu(III) resulted in the release of significant concentrations of aqueous Pu.
View Article and Find Full Text PDFElectronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen-bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected.
View Article and Find Full Text PDFGeologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques.
View Article and Find Full Text PDFU(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V.
View Article and Find Full Text PDFThe interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar).
View Article and Find Full Text PDFReactions involving variably hydrated super critical CO(2) (scCO(2)) and a Na saturated dioctahedral smectite (Na-STX-1) were examined by in situ high-pressure X-ray diffraction at 50 °C and 90 bar, conditions that are relevant to long-term geologic storage of CO(2). Both hydration and dehydration reactions were rapid with appreciable reaction occurring in minutes and near steady state occurring within an hour. Hydration occurred stepwise as a function of increasing H(2)O in the system; 1W, 2W-3W, and >3W clay hydration states were stable from ~2-30%, ~31-55 < 64%, and ≥ ~71% H(2)O saturation in scCO(2), respectively.
View Article and Find Full Text PDFA high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal.
View Article and Find Full Text PDFCarbonation reactions are central to the prospect of CO(2) trapping by mineralization in geologic reservoirs. In contrast to the relevant aqueous-mediated reactions, little is known about the propensity for carbonation in the key partner fluid: supercritical carbon dioxide containing dissolved water ("wet" scCO(2)). We employed in situ mid-infrared spectroscopy to follow the reaction of a model silicate mineral (forsterite, Mg(2)SiO(4)) for 24 h with wet scCO(2) at 50 °C and 180 atm.
View Article and Find Full Text PDFHeterogeneous reduction of actinides in higher, more soluble oxidation states to lower, more insoluble oxidation states by reductants such as Fe(II) has been the subject of intensive study for more than two decades. However, Fe(II)-induced reduction of sparingly soluble Pu(IV) to the more soluble lower oxidation state Pu(III) has been much less studied, even though such reactions can potentially increase the mobility of Pu in the subsurface. Thermodynamic calculations are presented that show how differences in the free energy of various possible solid-phase Fe(III) reaction products can greatly influence aqueous Pu(III) concentrations resulting from reduction of PuO₂(am) by Fe(II).
View Article and Find Full Text PDFEnviron Sci Technol
April 2011
Atomistic simulations were carried out to characterize the coordination environments of U incorporated in three Fe-(hydr)oxide minerals: goethite, magnetite, and hematite. The simulations provided information on U-O and U-Fe distances, coordination numbers, and lattice distortion for U incorporated in different sites (e.g.
View Article and Find Full Text PDF