Introduction: Enhanced recovery after surgery (ERAS) programmes include pre-operative, intraoperative and post-operative clinical pathways to improve quality of patient care while reducing length of stay (LOS) and readmission. This study assessed the feasibility and outcomes of an ERAS protocol for colorectal surgery implemented over 2 years in a small, resource-challenged rural hospital.
Methods: A prospective cohort study used retrospectively matched controls to assess the effect of ERAS on LOS in patients undergoing colorectal surgery in a small rural hospital in northern Ontario, Canada.
The neocortex encodes complex and simple motor outputs in all mammalian species that have been tested. Given that changes in neocortical reorganization (and corresponding corticospinal output) have been implicated in long term motor recovery after stroke injury, there remains a need to understand this biology in order to expedite and optimize clinical care. Here, changes in the neocortical topography of complex and simple movement outputs were evaluated in mice following experimental middle cerebral artery occlusion (MCAo).
View Article and Find Full Text PDFThe increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests.
View Article and Find Full Text PDFThe motor cortex is crucial for the voluntary control of skilled movement in mammals and is topographically organized into representations of the body (motor maps). Intracortical microstimulation of the motor cortex with long-duration pulse trains (LD-ICMS; ~500 ms) evokes complex movements, occurring in multiple joints or axial muscles, with characteristic movement postures and cortical topography across a variety of mammalian species. Although the laboratory mouse is extensively used in basic and pre-clinical research, high-resolution motor maps elicited with electrical LD-ICMS in both sexes of the adult mouse has yet to be reported.
View Article and Find Full Text PDFAfter incomplete spinal cord injury (SCI), cortical plasticity is involved in hindlimb locomotor recovery. Nevertheless, whether cortical activity is required for motor map plasticity and recovery remains unresolved. Here, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical inactivation protocol that uncovered a functional role of contralesional cortical activity in hindlimb recovery and ipsilesional map plasticity.
View Article and Find Full Text PDFThe mammalian motor cortex is topographically organized into representations of discrete body parts (motor maps). Studies in adult rats using long-duration intracortical microstimulation (LD-ICMS) reveal that forelimb motor cortex is functionally organized into several spatially distinct areas encoding complex, multijoint movement sequences: elevate, advance, grasp, and retract. The topographical arrangement of complex movements during development and the influence of skilled learning are unknown.
View Article and Find Full Text PDFAlterations in the functional organization of motor cortex and interictal motor deficits are observed in people with epilepsy. While seizures in the rat lead to more cortical area devoted to simple cortical forelimb movement representations (motor maps) assessed using short-duration intracortical microstimulation (ICMS), the effect of seizures on complex movements derived with long-duration ICMS is unknown. Further, the relationship between motor map expression and motor impairment is not well understood.
View Article and Find Full Text PDFNeural Regen Res
December 2019
Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete.
View Article and Find Full Text PDFSpinal cord injury (SCI) causes disturbances in motor, sensory, and autonomic function below the level of the lesion. Experimental animal models are valuable tools to understand the neural mechanisms involved in locomotor recovery after SCI and to design therapies for clinical populations. There are several experimental SCI models including contusion, compression, and transection injuries that are used in a wide variety of species.
View Article and Find Full Text PDFMicromachines (Basel)
December 2018
Current advanced transistor architectures, such as FinFETs and (stacked) nanowires and nanosheets, employ truly three-dimensional architectures. Already for aggressively scaled bulk transistors, both statistical and systematic process variations have critically influenced device and circuit performance. Three-dimensional device architectures make the control and optimization of the device geometries even more important, both in view of the nominal electrical performance to be achieved and its variations.
View Article and Find Full Text PDFAfter an incomplete spinal cord injury (SCI) spontaneous motor recovery can occur in mammals, but the underlying neural substrates remain poorly understood. The motor cortex is crucial for skilled motor learning and the voluntary control of movement and is known to reorganize after cortical injury to promote recovery. Motor cortex plasticity has also been shown to parallel the recovery of forelimb function after cervical SCI, but whether cortical plasticity participates in hindlimb recovery after SCI remains unresolved.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
December 2017
Behavioural inflexibility and associated atypical learning behaviours are common clinical manifestations of the autism spectrum disorder (ASD) phenotype. Despite advances in our understanding of ASD, little research has been devoted to experimental interventions that might help to circumvent behavioural inflexibility in ASD. The current paper suggests that motivational locomotion in the form of wheel running can reduce behavioural inflexibility and learning impairments in an ASD rat model, and discusses how the strategy of reward-coupled locomotor activity may lead to clinical interventions for children with ASD.
View Article and Find Full Text PDFBackground: Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols.
View Article and Find Full Text PDFBackground: Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used.
Objective: The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question.
There is a long-standing debate regarding the functional organization of motor cortex. Intracortical microstimulation (ICMS) studies have provided two contrasting views depending on the duration of stimulation. In the rat, short-duration ICMS reveals two spatially distributed forelimb movement representations, the rostral forelimb area (RFA) and caudal forelimb area (CFA), eliciting identical movements.
View Article and Find Full Text PDFInbreeding depression is expected to be more severe in stressful environments. However, the extent to which inbreeding affects the vulnerability of populations to environmental stressors, such as chemical exposure, remains unresolved. Here we report on the combined impacts of inbreeding and exposure to an endocrine disrupting chemical (the fungicide clotrimazole) on zebrafish (Danio rerio).
View Article and Find Full Text PDFPurpose: To compare long-term outcomes of total hip replacement (THR) in patients with or without contamination of the femoral head.
Methods: After a mean period of 12 (range, 8-17) years, 104 female and 71 male THR patients aged 47 to 96 (mean, 77) years were reassessed via a self-administered questionnaire, and 25 other THR patients were reassessed by review of case notes. The questionnaires comprised the 12-item Oxford hip score and the European Quality Of Life (EuroQOL).
Loss of frontal neocortical activation is one of the main neurophysiological abnormalities of Parkinson's disease (PD) and can be observed in rodent models of nigrostriatal degeneration. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus improves motor deficits in PD. However, it is unknown whether this general therapeutic effect is associated with a restoration of frontal output function.
View Article and Find Full Text PDFIdentification of active networks involved in behavior is central to understanding brain function as an emergent property. Functional magnetic resonance imaging (fMRI) allows the identification of areas with increased or decreased activity, but the cellular correlates to changes in fMRI response is still controversial. Deep brain stimulation of the posterior hypothalamic nucleus (PH) is known to facilitate locomotor behaviors and rescue locomotion in rodent models of parkinsonian akinesia by an unknown mechanism.
View Article and Find Full Text PDFSensory cues can improve movement deficits in Parkinson's disease, but little is known about the mechanisms involved. To investigate neuroplastic changes following sensorimotor cue training, rats were shaped to respond to acoustic tone or medial geniculate stimulation cues by retrieving a food reward. Neuroplasticity associated with training was assessed by changes in auditory neocortical evoked field potentials and dendritic morphology.
View Article and Find Full Text PDFThe neurophysiologic model of Parkinson's disease predicts nigrostriatal dopamine depletion leads to increased inhibitory basal ganglia output resulting in frontal neocortical hypoactivity. The nature of this hypoactivation is not well understood and modeled predominantly by a unilateral representation. Intracortical microstimulation (ICMS) was used to probe topographic movement representations of the left forelimb motor area 2 weeks following sham, unilateral left hemisphere or bilateral intrastriatal 6-hydroxydopamine (6-OHDA) infusion and under acute dopamine receptor antagonism with haloperidol in non-lesioned rats.
View Article and Find Full Text PDFAtypically organised motor maps have been described in some people with epilepsy and we have modelled this in rats. Our goal is to more fully understand the mechanisms responsible for seizure-induced functional brain reorganisation and to reverse their effects. Here we present an overview of the relationship between neocortical motor maps, seizures, and interictal behaviour.
View Article and Find Full Text PDFBackground: Celiac disease (CD) is one of the most common lifelong disorders in western countries. However, most cases remain currently undiagnosed in North America, mostly due to poor awareness of CD by primary care physicians.
Objectives: The aims of this study were (a) to determine whether an active case-finding strategy in primary care could increase the frequency of CD diagnosis and (b) to determine the most common clinical presentations of the condition.
Curr Treat Options Gastroenterol
July 2006
Determining which patients with irritable bowel syndrome (IBS) are "refractory" is highly subjective. The duration, severity, and type of symptoms and a host of other epidemiologic and psychosocial factors play a role in this determination. Long duration of symptoms alone does not portray the severe IBS patient.
View Article and Find Full Text PDF