Background/aims: Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity.
View Article and Find Full Text PDFObjective: Accelerated gastric emptying that precipitates hunger and frequent eating could be a potential factor in the development of obesity. The aim of this study was to study gastric emptying in diet-induced obese-prone (DIO-P) and DIO-resistant (DIO-R) rats and explore possible differences in electrical properties of calcium (Ca(2+) ) and potassium (K(+) ) channels of antral circular smooth muscle cells (SMCs).
Design And Methods: Whole-cell patch-clamp technique was used to measure Ca(2+) and K(+) currents in single SMCs.
IEEE Trans Biomed Eng
September 2012
Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights).
View Article and Find Full Text PDFA novel, anatomically-accurate model of a tibialis anterior muscle is used to investigate the electro-physiological properties of denervated muscles following functional electrical stimulation. The model includes a state-of-the-art description of cell electro-physiology. The main objective of this work is to develop a computational framework capable of predicting the effects of different stimulation trains and electrode configurations on the excitability and fatigue of skeletal muscle tissue.
View Article and Find Full Text PDFElectromagnetic articulography (EMA) is designed to track facial and tongue movements. In practice, the EMA sensors for tracking the movement of the tongue's surface are placed heuristically. No recommendation exists.
View Article and Find Full Text PDFBackground & Aims: Interstitial cells of Cajal (ICC) generate slow waves. Disrupted ICC networks and gastric dysrhythmias are each associated with gastroparesis. However, there are no data on the initiation and propagation of slow waves in gastroparesis because research tools have lacked spatial resolution.
View Article and Find Full Text PDFBackground: Computer models that capture key features of the heterogeneous myofiber architecture of right and left atria and interatrial septum provide a means of investigating the mechanisms responsible for atrial arrhythmia. The data necessary to implement such models have not previously been available. The aims of this study were to characterize surface geometry and myofiber architecture throughout the atrial chambers and to investigate the effects of this structure on atrial activation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
In this study, novel methods were developed for the in-vivo high-resolution recording and analysis of small intestine bioelectrical activity, using flexible printed-circuit-board (PCB) electrode arrays. Up to 256 simultaneous recordings were made at multiple locations along the porcine small intestine. Data analysis was automated through the application and tuning of the Falling-Edge Variable-Threshold algorithm, achieving 92% sensitivity and a 94% positive-predictive value.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
In this study, an automated algorithm was developed to identify the arrhythmic gastric slow wave activity that was recorded using high-resolution mapping technique. The raw signals were processed with a Savitzky-Golay filter, and the slow wave activation times were identified using a threshold-varying method and grouped using a region-growing method. Slow wave amplitudes and velocities were calculated for all cycles.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
High resolution mapping of electrical activity is becoming an important technique for analysing normal and dysrhythmic gastrointestinal (GI) slow wave activity. Several methods are used to extract meaningful information from the large quantities of data obtained, however, at present these methods can only be used offline. Thus, all analysis currently performed is retrospective and done after the recordings have finished.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
High resolution electrical mapping of slow waves on the stomach serosa has improved our understanding of gastric electrical activity in normal and diseased states. In order to assess the signals acquired from high resolution mapping, a robust framework is required. Our framework is semi-automated and allows for rapid processing, analysis and interpretation of slow waves via qualitative and quantitative measures including isochronal activation time mapping, and velocity and amplitude mapping.
View Article and Find Full Text PDFRadiofrequency catheter ablation as a curative method for atrial fibrillation (AF) has become increasingly popular. Patients with paroxysmal AF have been treated by catheter ablation with great success, but so far this treatment has been less effective for patients with persistent AF. Usually there are multiple triggers or substrates during persistent AF and their exact locations are unclear.
View Article and Find Full Text PDFHigh-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2011
Gastrointestinal (GI) motility is coordinated by several cooperating mechanisms, including electrical slow wave activity, the enteric nervous system (ENS), and other factors. Slow waves generated in interstitial cells of Cajal (ICC) depolarize smooth muscle cells (SMC), generating basic GI contractions. This unique electrical coupling presents an added layer of complexity to GI electromechanical models, and a current barrier to further progress is the lack of a framework for ICC-SMC-contraction coupling.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2011
Multi-scale modeling has become a productive strategy for quantifying interstitial cells of Cajal (ICC) network structure-function relationships, but the lack of large-scale ICC network imaging data currently limits modeling progress. The single normal equation simulation (SNESIM) algorithm was utilized to generate realistic virtual images of small real wild-type (WT) and 5-HT(2B)-receptor knockout (Htr2b(-/-)) mice ICC networks. Two metrics were developed to validate the performance of the algorithm: 1) network density, which is the proportion of ICC in the tissue; and 2) connectivity, which reflects the degree of connectivity of the ICC network.
View Article and Find Full Text PDFGastrointestinal motility research is progressing rapidly, leading to significant advances in the last 15 years in understanding the cellular mechanisms underlying motility, following the discovery of the central role played by the interstitial cells of Cajal (ICC). As experimental knowledge of ICC physiology has expanded, biophysically based modeling has become a valuable tool for integrating experimental data, for testing hypotheses on ICC pacemaker mechanisms, and for applications in in silico studies including in multiscale models. This review is focused on the cellular electrophysiology of ICC.
View Article and Find Full Text PDFCrit Rev Biomed Eng
January 2011
Normal gastrointestinal (GI) motility results from the coordinated interplay of multiple cooperating mechanisms, both intrinsic and extrinsic to the GI tract. A fundamental component of this activity is an omnipresent electrical activity termed slow waves, which is generated and propagated by the interstitial cells of Cajal (ICCs). The role of ICC loss and network degradation in GI motility disorders is a significant area of ongoing research.
View Article and Find Full Text PDFRecordings of the magnetic fields (MFs) arising from gastric electrical activity (GEA) have been shown to be able to distinguish between normal and certain abnormal GEA. Mathematical models provide a powerful tool for revealing the relationship between the underlying GEA and the resultant magnetogastrograms (MGGs). However, it remains uncertain the relative contributions that different volume conductor and dipole source models have on the resultant MFs.
View Article and Find Full Text PDFThe motility of the stomach is coordinated by an electrical activity termed "slow waves", and slow-wave dysrhythmias contribute to motility disorders. One major method for clinically evaluating gastric dysrhythmias has been electrogastrography (EGG); however, the clinical utility of EGG is limited partly due to the uncertainty regarding its electrophysiological basis. In this study, a multiscale model of gastric slow waves was generated from a biophysically based continuum description of cellular electrical events, coupled with a subject-specific human stomach model and high-resolution electrical mapping data.
View Article and Find Full Text PDFHigh-resolution (HR) multi-electrode mapping has become an important technique for evaluating gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR mapping has been constrained by the complex and laborious task of analyzing the large volumes of retrieved data. Recently, a rapid and reliable method for automatically identifying activation times (ATs) of SWs was presented, offering substantial efficiency gains.
View Article and Find Full Text PDFThe functions of the gastrointestinal (GI) tract include digestion, absorption, excretion, and protection. In this review, we focus on the electrical activity of the stomach and small intestine, which underlies the motility of these organs, and where the most detailed systems descriptions and computational models have been based to date. Much of this discussion is also applicable to the rest of the GI tract.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2010
Slow waves coordinate gastric motility, and abnormal slow-wave activity is thought to contribute to motility disorders. The current understanding of normal human gastric slow-wave activity is based on extrapolation from data derived from sparse electrode recordings and is therefore potentially incomplete. This study employed high-resolution (HR) mapping to reevaluate human gastric slow-wave activity.
View Article and Find Full Text PDFGastrointestinal slow waves are generated within networks of interstitial cells of Cajal (ICCs). In the intact tissue, slow waves are entrained to neighboring ICCs with higher intrinsic frequencies, leading to active propagation of slow waves. Degradation of ICC networks in humans is associated with motility disorders; however, the pathophysiological mechanisms of this relationship are uncertain.
View Article and Find Full Text PDF