There has been a wealth of research conducted regarding the partitioning of red blood cells (RBCs) at bifurcations within the microvasculature. In previous studies, partitioning has been characterized as either regular partitioning, in which the higher flow rate daughter channel receives a proportionally larger percentage of RBCs, or reverse partitioning, in which the opposite occurs. While there are many examples of network studies , most work has been conducted using single bifurcation.
View Article and Find Full Text PDFThere is a long history of research examining red blood cell (RBC) partitioning in microvasculature bifurcations. These studies commonly report results describing partitioning that exists as either regular partitioning, which occurs when the RBC flux ratio is greater than the bulk fluid flowrate ratio, or reverse partitioning when the RBC flux ratio is less than or equal to that of the bulk fluid flowrate. This paper presents a study of RBC partitioning in a single bifurcating microchannel with dimensions of 6 to 16 μm, investigating the effects of hematocrit, channel width, daughter channel flowrate ratio, and bifurcation angle.
View Article and Find Full Text PDF