Publications by authors named "Andrew Prongay"

For successful vector-based gene therapy manufacturing, the selected adeno-associated virus (AAV) vector production system must produce vector at sufficient scale. However, concerns have arisen regarding the quality of vector produced using different systems. In this study, we compared AAV serotypes 1, 8, and 9 produced by two different systems (Sf9/baculovirus and HEK293/transfection) and purified by two separate processes.

View Article and Find Full Text PDF

Recent successes of adeno-associated virus (AAV)-based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.

View Article and Find Full Text PDF

Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.

View Article and Find Full Text PDF

In the search for a second generation HCV protease inhibitor, molecular modeling studies of the X-ray crystal structure of Boceprevir1 bound to the NS3 protein suggest that expansion into the S4 pocket could provide additional hydrophobic Van der Waals interactions. Effective replacement of the P4 tert-butyl with a cyclohexylmethyl ligand led to inhibitor 2 with improved enzyme and replicon activities. Subsequent modeling and SAR studies led to the pyridine 38 and sulfone analogues 52 and 53 with vastly improved PK parameters in monkeys, forming a new foundation for further exploration.

View Article and Find Full Text PDF

SAR studies on the extension of P3 unit of Boceprevir (1, SCH 503034) with amides and lactams and their synthesis is described. Extensive SAR studies resulted in the identification of 36 bearing 4, 4-dimethyl lactam as the new P4 cap unit with improved potency (K(i)( *)=15nM, EC 90=70nM) and pharmacokinetic properties (Rat AUC (PO)=3.52microMh) compared to 1.

View Article and Find Full Text PDF

Current antimitotic cancer chemotherapy based on vinca alkaloids and taxanes target tubulin, a protein required not only for mitotic spindle formation but also for the overall structural integrity of terminally differentiated cells. Among many innovations targeting specific mitotic events, inhibition of motor enzymes including KSP (or Eg5) has been validated as a highly productive approach. Many reported KSP inhibitors bind to an induced allosteric site near the site of ATP hydrolysis, and some have been tested in clinical trials with varying degrees of success.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 200 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or PEG-interferon alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only approximately 50% of the patients showing sustained virological response.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The moderate efficacy along with side effects of the current pegylated interferon and ribavirin combination therapy underscores the need for more effective and safer new treatment. In an effort to improve upon our current clinical candidate, Boceprevir (SCH 503034), extensive SAR studies were performed on the P3 capping moieties.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, and affects more than 200 million people worldwide. Although combination therapy of interferon-alpha and ribavirin is reasonably successful in treating majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of a series of ketoamide derived P(1)-P(3) macrocyclic inhibitors that are more potent than the first generation clinical candidate, boceprevir (1, Sch 503034), is discussed.

View Article and Find Full Text PDF

Chronic hepatitis C infection is the leading causes for cirrhosis of the liver and hepatocellular carcinoma, leading to liver failure and liver transplantation. The etiological agent, HCV virus produces a single positive strand of RNA that is processed with the help of serine protease NS3 to produce mature virus. Inhibition of NS3 protease can be potentially used to develop effective drugs for HCV infections.

View Article and Find Full Text PDF

Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75.

View Article and Find Full Text PDF

The structures of both native and S139A holo-HCV NS3/4A protease domain were solved to high resolution. Subsequently, structures were determined for a series of ketoamide inhibitors in complex with the protease. The changes in the inhibitor potency were correlated with changes in the buried surface area upon binding the inhibitor to the active site.

View Article and Find Full Text PDF

An issue of clinical importance in the development of new antivirals for HCV is emergence of resistance. Several resistance loci to ketoamide inhibitors of the NS3/4A protease have been identified (residues V36, T54, R155, A156, and V170) by replicon and clinical studies. Using SCH 567312, a more potent protease inhibitor derived from SCH 503034 (boceprevir) series, we identified two new positions (Q41 and F43) that confer resistance to the ketoamide class.

View Article and Find Full Text PDF

An efficient synthetic approach for the preparation of macrocyclic peptidomimetics for inhibition of HCV NS3 is presented. The macrocyclic core is built using ring-closing metathesis (RCM) of a tripeptidic diene. The presented approach allows the introduction of heteroatoms in strategic places along the macrocyclic ring.

View Article and Find Full Text PDF

The structures of both the native holo-HCV NS3/4A protease domain and the protease domain with a serine 139 to alanine (S139A) mutation were solved to high resolution. Subsequently, structures were determined for a series of ketoamide inhibitors in complex with the protease. The changes in the inhibitor potency were correlated with changes in the buried surface area upon binding the inhibitor to the active site.

View Article and Find Full Text PDF

Background: Current hepatitis C virus (HCV) therapies may cure approximately 60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, alpha-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed.

View Article and Find Full Text PDF

The effect of the resistance mutations A156T, D168V, and D168Q in HCV protease on the binding of SCH 6, SCH 503034, VX-950, BILN-2061, and compound 1 was evaluated using the free energy perturbation (FEP) approach. All the inhibitors are highly potent against the wild-type enzyme, but their activity was affected differently by the mutants. A156T reduced the activity of SCH 503034, BILN-2061, and VX950 drastically (200-1000-fold) but that of SCH 6 only moderately (27-fold).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response.

View Article and Find Full Text PDF

Synthesis and HCV NS3 serine protease inhibitory activity of 4-hydroxyproline derived macrocyclic inhibitors and SAR around this macrocyclic core is described in this communication. X-ray structure of inhibitor 38 bound to the protease is discussed.

View Article and Find Full Text PDF

Introduction of various modified prolines at P(2) and optimization of the P(1) side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K(i)*= 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC(50) and IC(90) of 40 and 100 nM, respectively.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket.

View Article and Find Full Text PDF

HCV drug discovery efforts have largely focused on genotype 1 virus due to its prevalence and relatively poor response to current therapy. However, patients infected with genotype 2 and 3 viruses account for a significant number of cases and would also benefit from new therapies. In vitro studies using two chemically distinct protease inhibitors with clinical potential showed that one, VX-950, was equally active on proteases from all three genotypes, whereas the other, BILN 2061, was significantly less active on genotype 2 and 3 proteases.

View Article and Find Full Text PDF

The NS3 protease of hepatitis C virus (HCV) has emerged as one of the best characterized targets for next-generation HCV therapy. The tetrapeptide 1 and pentapeptide 2 are alpha-ketoamide-type HCV serine protease inhibitors with modest potency. We envisioned that the 1,2,3,4-tetrahydroisoquinoline-3-carboxylamide (Tic) moiety could be cyclized to the P3 capping group.

View Article and Find Full Text PDF

Prolonged hepatitis C infection is the leading cause for cirrhosis of the liver and hepatocellular carcinoma. The etiological agent HCV virus codes a single polyprotein of approximately 3000 amino acids that is processed with the help of a serine protease NS3A to produce structural and non-structural proteins required for viral replication. Inhibition of NS3 protease can potentially be used to develop drugs for treatment of HCV infections.

View Article and Find Full Text PDF

Depeptidization efforts of the P(3)-P(2) region of P(3) capped alpha-ketoamide inhibitor of HCV NS3 serine protease 1 are reported. We clearly established that N-methylation of the P(2) nitrogen and modification of the P(2)' carboxylic acid terminus were essential for activity in the replicon assay.

View Article and Find Full Text PDF