Biomimetics (Basel)
December 2024
Visual navigation is a key capability for robots and animals. Inspired by the navigational prowess of social insects, a family of insect-inspired route navigation algorithms-familiarity-based algorithms-have been developed that use stored panoramic images collected during a training route to subsequently derive directional information during route recapitulation. However, unlike the ants that inspire them, these algorithms ignore the sequence in which the training images are acquired so that all temporal information/correlation is lost.
View Article and Find Full Text PDFInsect-inspired navigation strategies have the potential to unlock robotic navigation in power-constrained scenarios, as they can function effectively with limited computational resources. One such strategy, familiarity-based navigation, has successfully navigated a robot along routes of up to 60 m using a single-layer neural network trained with an Infomax learning rule. Given the small size of the network that effectively encodes the route, here we investigate the limits of this method, challenging it to navigate longer routes, investigating the relationship between performance, view acquisition rate and dimension, network size, and robustness to noise.
View Article and Find Full Text PDFThe central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/β-catenin signaling pathway. Yet the exact molecular interplay remains elusive.
View Article and Find Full Text PDFAnts are capable of learning long visually guided foraging routes with limited neural resources. The visual scene memory needed for this behaviour is mediated by the mushroom bodies; an insect brain region important for learning and memory. In a visual navigation context, the mushroom bodies are theorised to act as familiarity detectors, guiding ants to views that are similar to those previously learned when first travelling along a foraging route.
View Article and Find Full Text PDFThe start of a bumblebee's first learning flight from its nest provides an opportunity to examine the bee's learning behaviour during its initial view of the nest's unfamiliar surroundings. Like many other hymenopterans, bumblebees store views of their nest surroundings while facing their nest. We found that a bumblebee's first fixation of the nest is a coordinated manoeuvre in which the insect faces the nest with its body oriented towards a particular visual feature within its surroundings.
View Article and Find Full Text PDFWood ants were trained indoors to follow a magnetically specified route that went from the centre of an arena to a drop of sucrose at the edge. The arena, placed in a white cylinder, was in the centre of a 3D coil system generating an inclined Earth-strength magnetic field in any horizontal direction. The specified direction was rotated between each trial.
View Article and Find Full Text PDFDespite the importance of pollinating insects to natural environments and agriculture, there have been few attempts to unite the existing plant-pollinator interaction datasets into a single depository using a common format. Accordingly, we have created one of the world's first online, open-access, and searchable pollinator-plant interaction databases. DoPI (The Database of Pollinator Interactions) was built from a systematic review of the scientific literature and unpublished datasets requested from researchers and organizations.
View Article and Find Full Text PDFEffective decision making in a changing environment demands that accurate predictions are learned about decision outcomes. In Drosophila, such learning is orchestrated in part by the mushroom body, where dopamine neurons signal reinforcing stimuli to modulate plasticity presynaptic to mushroom body output neurons. Building on previous mushroom body models, in which dopamine neurons signal absolute reinforcement, we propose instead that dopamine neurons signal reinforcement prediction errors by utilising feedback reinforcement predictions from output neurons.
View Article and Find Full Text PDFHoneybees and bumblebees perform learning flights when leaving a newly discovered flower. During these flights, bees spend a portion of the time turning back to face the flower when they can memorize views of the flower and its surroundings. In honeybees, learning flights become longer when the reward offered by a flower is increased.
View Article and Find Full Text PDFFor the first time, a field programmable transistor array (FPTA) was used to evolve robot control circuits directly in analog hardware. Controllers were successfully incrementally evolved for a physical robot engaged in a series of visually guided behaviours, including finding a target in a complex environment where the goal was hidden from most locations. Circuits for recognising spoken commands were also evolved and these were used in conjunction with the controllers to enable voice control of the robot, triggering behavioural switching.
View Article and Find Full Text PDFDiscriminating, extracting and encoding temporal regularities is a critical requirement in the brain, relevant to sensory-motor processing and learning. However, the cellular mechanisms responsible remain enigmatic; for example, whether such abilities require specific, elaborately organized neural networks or arise from more fundamental, inherent properties of neurons. Here, using multi-electrode array technology, and focusing on interval learning, we demonstrate that sparse reconstituted rat hippocampal neural circuits are intrinsically capable of encoding and storing sub-second-order time intervals for over an hour timescale, represented in changes in the spatial-temporal architecture of firing relationships among populations of neurons.
View Article and Find Full Text PDFIn swimming virtual creatures, there is often a disparity between the level of detail in simulating a swimmer's body and that of the fluid it moves in. To address this disparity, we have developed a new approach to modeling swimming virtual creatures using pseudo-soft bodies and particle-based fluids, which has sufficient realism to investigate a larger range of body-environment interactions than are usually included. As this comes with increased computational costs, which may be severe, we have also developed a means of reducing the volume of fluid that must be simulated.
View Article and Find Full Text PDFResearch in crowd psychology has demonstrated key differences between the behaviour of crowds where members are in the same place at the same time, and the collective behaviour of crowds where the entire crowd perceive themselves to be part of the same group through a shared social identity. As yet, no research has investigated the behavioural effects that a shared social identity has on crowd movement at a pedestrian level. To investigate the direction and extent to which social identity influences the movement of crowds, 280 trajectories were tracked as participants walked in one of two conditions: (1) a psychological crowd primed to share a social identity; (2) a naturally occurring physical crowd.
View Article and Find Full Text PDFAll organisms wishing to survive and reproduce must be able to respond adaptively to a complex, changing world. Yet the computational power available is constrained by biology and evolution, favouring mechanisms that are parsimonious yet robust. Here we investigate the information carried in small populations of visually responsive neurons in Drosophila melanogaster.
View Article and Find Full Text PDFThe visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware.
View Article and Find Full Text PDFInteroception is the sense through which internal bodily changes are signalled and perceived. Individual differences in interoception are linked to emotional style and vulnerability to affective disorders. Here we test how experiential sleep quality relates to dimensions of interoceptive ability.
View Article and Find Full Text PDFNaturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition.
View Article and Find Full Text PDFWe propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings.
View Article and Find Full Text PDFThe specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2(Y949F/Y949F) leads to VEGFA-resistant endothelial adherens junctions and a block in molecular extravasation.
View Article and Find Full Text PDFCompliant bodies with complex dynamics can be used both to simplify control problems and to lead to adaptive reflexive behavior when engaged with the environment in the sensorimotor loop. By revisiting an experiment introduced by Beer and replacing the continuous-time recurrent neural network therein with reservoir computing networks abstracted from compliant bodies, we demonstrate that adaptive behavior can be produced by an agent in which the body is the main computational locus. We show that bodies with complex dynamics are capable of integrating, storing, and processing information in meaningful and useful ways, and furthermore that with the addition of the simplest of nervous systems such bodies can generate behavior that could equally be described as reflexive or minimally cognitive.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
February 2016
The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation.
View Article and Find Full Text PDFWood ants, like other central place foragers, rely on route memories to guide them to and from a reliable food source. They use visual memories of the surrounding scene and probably compass information to control their direction. Do they also remember the length of their route and do they link memories of direction and distance? To answer these questions, we trained wood ant (Formica rufa) foragers in a channel to perform either a single short foraging route or two foraging routes in opposite directions.
View Article and Find Full Text PDFComputer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature ( = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations.
View Article and Find Full Text PDFDrosophila melanogaster are a good system in which to understand the minimal requirements for widespread visually guided behaviours such as navigation, due to their small brains (adults possess only 100,000 neurons) and the availability of neurogenetic techniques which allow the identification of task-specific cell types. Recently published data describe the receptive fields for two classes of visually responsive neurons (R2 and R3/R4d ring neurons in the central complex) that are essential for visual tasks such as orientation memory for salient objects and simple pattern discriminations. What is interesting is that these cells have very large receptive fields and are very small in number, suggesting that each sub-population of cells might be a bottleneck in the processing of visual information for a specific behaviour, as each subset of cells effectively condenses information from approximately 3000 visual receptors in the eye, to fewer than 50 neurons in total.
View Article and Find Full Text PDF