Publications by authors named "Andrew Perkowski"

There is a compelling need to find drugs active against (). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported.

View Article and Find Full Text PDF

4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme for () survival and virulence and therefore an attractive target for a tuberculosis therapeutic. In this work, two modeling-informed approaches toward the isosteric replacement of the amidinourea moiety present in the previously reported PptT inhibitor AU 8918 are reported. Although a designed 3,5-diamino imidazole unexpectedly adopted an undesired tautomeric form and was inactive, replacement of the amidinourea moiety afforded a series of active PptT inhibitors containing 2,6-diaminopyridine scaffolds.

View Article and Find Full Text PDF

Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill (Mtb).

View Article and Find Full Text PDF

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in . The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring.

View Article and Find Full Text PDF

The historical view of β-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against () in the presence of a β-lactamase inhibitor. However, most antimycobacterial β-lactams kill only or best when the bacilli are replicating. Here, a screen of 1904 β-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against under both replicating and nonreplicating conditions, neither activity requiring a β-lactamase inhibitor.

View Article and Find Full Text PDF

A systematic study of the stability of a set of cephalosporins in mouse plasma reveals that cephalosporins lacking an acidic moiety at C-2 may be vulnerable to β-lactam cleavage in mouse plasma.

View Article and Find Full Text PDF

The Newman-Kwart rearrangement is perhaps the quintessential method for the synthesis of thiophenols from the corresponding phenol. However, the high thermal conditions required for the rearrangement of the requisite O-aryl carbamothioates often leads to decomposition. Herein, we present a general strategy for catalysis of O-aryl carbamothioates to S-aryl carbamothioates using catalytic quantities of a commercially available organic single-electron photooxidant.

View Article and Find Full Text PDF

Metal-free, visible light-initiated, living cationic polymerization of 4-methoxystyrene using 2,4,6-tri(p-tolyl)pyrylium tetrafluoroborate and methanol is demonstrated. Molecular weight and dispersity are controlled by the concentration of methanol. Initial mechanistic analysis suggests that methanol likely serves to regulate propagation of the cation chain end via reversible chain transfer in a manner analogous to reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

A direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes is reported. The catalyst system is comprised of the Fukuzumi acridinium photooxidant (1) and a substoichiometric quantity of a hydrogen-atom donor. Oxidizable olefins, such as styrenes, trisubstituted aliphatic alkenes, and enamides, can be employed along with a variety of carboxylic acids to afford the anti-Markovnikov addition adducts exclusively.

View Article and Find Full Text PDF