Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy.
View Article and Find Full Text PDFBackground: N-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2010
BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP_810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2010
YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Å resolution.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2006
Approximately 30% of the human genome, and likewise for other genomes, encodes membrane proteins. Also, the majority of known human pharmaceutical targets are membrane proteins. As a consequence, the future success of structure-based drug-design efforts will rely heavily on membrane-protein structural information.
View Article and Find Full Text PDFThe [2Fe-2S] ferredoxin (Fd4) from Aquifex aeolicus adopts a thioredoxin-like polypeptide fold that is distinct from other [2Fe-2S] ferredoxins. Crystal structures of the Cys-55 --> Ser (C55S) and Cys-59 --> Ser (C59S) variants of this protein have been determined to 1.25 A and 1.
View Article and Find Full Text PDFIn the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.
View Article and Find Full Text PDF