Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch(16), in fission yeast.
View Article and Find Full Text PDFLoss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe.
View Article and Find Full Text PDFIn rapidly dividing bacterial cells, the machinery for repair of DNA double-strand breaks has to contend not only with the forces driving replication and transmission of the DNA but also its transcription. By exploiting I-SceI homing endonuclease to break the Escherichia coli chromosome at one or more defined locations, we have been able to investigate how these processes are co-ordinated and repair is accomplished. When breaks are induced at a single site, the SOS-inducible RecN protein and the transcription factor DksA combine to promote efficient repair.
View Article and Find Full Text PDFDouble-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair relies on the RecBCD and RecA proteins, the combined ability of which to initiate recombination and form joint-molecule intermediates is well understood.
View Article and Find Full Text PDF