Publications by authors named "Andrew P Price"

Tissue engineering using decellularized whole lungs as matrix scaffolds began as a promise for creating autologous transplantable lungs for patients with end-stage lung disease and can also be used to study strategies for lung regeneration. Vascularization remains a critical component for all solid organ bioengineering, yet there has been limited success in generating functional re-endothelialization of most pulmonary vascular segments. We evaluated recellularization of the blood vessel conduits of acellular mouse scaffolds with highly proliferating, rat pulmonary microvascular endothelial progenitor cells (RMEPCs), pulmonary arterial endothelial cells (PAECs) or microvascular endothelial cells (MVECs).

View Article and Find Full Text PDF

The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells.

View Article and Find Full Text PDF

Rationale: Obliterative bronchiolitis (OB) is a significant cause of morbidity and mortality after lung transplant and hematopoietic cell transplant. Mesenchymal stromal cells (MSCs) have been shown to possess immunomodulatory properties in chronic inflammatory disease.

Objective: Administration of MSCs was evaluated for the ability to ameliorate OB in mice using our established allogeneic bone marrow transplant (BMT) model.

View Article and Find Full Text PDF

We developed an automated system that can be used to decellularize whole human-sized organs and have shown lung as an example. Lungs from 20 to 30 kg pigs were excised en bloc with the trachea and decellularized with our established protocol of deionized water, detergents, sodium chloride, and porcine pancreatic DNase. A software program was written to control a valve manifold assembly that we built for selection and timing of decellularization fluid perfusion through the airway and the vasculature.

View Article and Find Full Text PDF

Unlabelled: ABSTRACT Background: Obliterative bronchiolitis (OB) is a major obstacle to the success of lung transplantation and is also a serious complication of hematopoietic stem cell transplant. It has few therapeutic options and respiratory delivery of potential therapeutic drugs is hindered by the narrowed and occluded airways.

Methods: OB was induced in mice using an established protocol and lung function was assessed by plethysmograph.

View Article and Find Full Text PDF

Idiopathic pneumonia syndrome (IPS) is a significant cause of morbidity and mortality post-bone marrow transplantation (BMT) in humans. In our established murine IPS model in which lethally conditioned recipients are given allogeneic bone marrow and splenocytes, recruitment of host monocytes occurs early post-BMT, followed by donor T cells concomitant with development of severe lung dysfunction. Because matrix metalloproteinase 12 (MMP12) is important for macrophage infiltration and injury in other mouse models of lung disease such as emphysema, lethally conditioned MMP12(-/-) mice were used as allogeneic recipients to determine whether MMP12 plays a similar role in potentiating lung injury in IPS.

View Article and Find Full Text PDF

We developed a decellularized murine lung matrix bioreactor system that could be used to evaluate the potential of stem cells to regenerate lung tissue. Lungs from 2-3-month-old C57BL/6 female mice were excised en bloc with the trachea and heart, and decellularized with sequential solutions of distilled water, detergents, NaCl, and porcine pancreatic DNase. The remaining matrix was cannulated and suspended in small airway growth medium, attached to a ventilator to simulate normal, murine breathing-induced stretch.

View Article and Find Full Text PDF

Rationale: Bronchiolitis obliterans (BO) is a major problem in lung transplantation and is also part of the spectrum of late-onset pulmonary complications that can occur after hematopoietic stem cell transplant. Better mouse models are needed to study the onset of this disease so that therapeutic interventions can be developed.

Objectives: Our goal was to develop a BO mouse model.

View Article and Find Full Text PDF