Publications by authors named "Andrew P Negri"

The restoration of reefs damaged by global and local pressures remains constrained by the scale of intervention currently feasible. Traditional methods for ex situ sexual propagation of corals produce limited materials, typically of limited genetic diversity and only sufficient for small field trials. The development and validation of new technologies to upscale and automate coral propagation is required to achieve logistically and financially feasible reef restoration at ecologically relevant scales.

View Article and Find Full Text PDF

Knowledge of coral larval precompetency periods and maximum competency windows is fundamental to understanding coral population dynamics, informing biogeography and connectivity patterns, and predicting reef recovery following disturbances. Yet for many species, estimates of these early-life history metrics are scarce and vary widely. Furthermore, settlement cues for many taxa are not known despite consequences to habitat selection.

View Article and Find Full Text PDF

Pesticides are ubiquitous in the catchments of the Great Barrier Reef (GBR) and regularly discharge into the nearshore waters. Effective management of pesticides requires suitable water quality guideline values (WQGVs), and further ecotoxicological data for many pesticides are needed to improve the reliability of environmental risk assessments. To help address this issue, toxicity thresholds were determined to two species of tropical marine microalgae Tisochrysis lutea and Tetraselmis sp.

View Article and Find Full Text PDF

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens.

View Article and Find Full Text PDF

Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria.

View Article and Find Full Text PDF

Application of oil toxicity modelling for assessing the risk of spills to coral reefs remains uncertain due to a lack of data for key tropical species and environmental conditions. In this study, larvae of the coral Acropora millepora were exposed to six aromatic hydrocarbons individually to generate critical target lipid body burdens (CTLBBs). Larval metamorphosis was inhibited by all six aromatic hydrocarbons, while larval survival was only affected at concentrations >2000 μg L.

View Article and Find Full Text PDF

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure.

View Article and Find Full Text PDF

A range of new statistical approaches is being developed and/or adopted in ecotoxicology that, when combined, can greatly improve the estimation of no-effect toxicity values from concentration-response (CR) experimental data. In particular, we compare the existing no-effect-concentration (NEC) threshold-based toxicity metric with an alternative no-significant-effect-concentration (NSEC) metric suitable for when CR data do not show evidence of a threshold effect. Using a model-averaging approach, these metrics can be combined to yield estimates of N(S)EC and of their uncertainty within a single analysis framework.

View Article and Find Full Text PDF

The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 μg L for toluene, naphthalene and 1-MN, respectively.

View Article and Find Full Text PDF

In the early stages after larval settlement, coral spat can be rapidly overgrown and outcompeted by algae, reducing overall survival for coral reef replenishment and supply for restoration programs. Here we investigated three antifouling (AF) coatings for their ability to inhibit algal fouling on coral settlement plugs, a commonly-used restoration substrate. Plugs were either fully or partially coated with the AF coatings and incubated in mesocosm systems with partial recirculation for 37 days to track fouling succession.

View Article and Find Full Text PDF

Oil pollution remains a prominent local hazard to coral reefs, but the sensitivity of some coral life stages to oil exposure remains unstudied. Exposure to ultraviolet radiation (UVR), ubiquitous on coral reefs, may significantly increase oil toxicity towards these critical habitat-forming taxa. Here we present the first data on the sensitivity of two distinct post-settlement life stages of the model coral species Acropora millepora to a heavy fuel oil (HFO) water accommodated fraction (WAF) in the absence and presence of UVR.

View Article and Find Full Text PDF

Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited.

View Article and Find Full Text PDF

Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/F') and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1).

View Article and Find Full Text PDF

Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 μg L total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 μg L TAH) being more conservative, supporting TLM-modelled thresholds for tropical application.

View Article and Find Full Text PDF

The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron.

View Article and Find Full Text PDF

Coral larval settlement patterns are influenced by a vast array of factors; however, the relative roles of individual factors are rarely tested in isolation, leading to confusion about which are most crucial for settlement. For example, direct effects of the light environment are often cited as a major factor influencing settlement patterns, yet this has not been demonstrated under environmentally realistic lighting regimes in the absence of confounding factors. Here we apply programmable multispectral lights to create realistic light spectra, while removing correlating (but not obvious) factors that are common in laboratory settlement experiments.

View Article and Find Full Text PDF

Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.

View Article and Find Full Text PDF

Tropical marine ecosystems, such as coral reefs, face several threats to their health and resilience, including poor water quality. Previous studies on the risks posed by pesticides have focused on five priority herbicides; however, as the number of pesticides applied in coastal agriculture increases, a suite of 'alternative' pesticides is being detected in tropical nearshore waters. To improve our understanding of the risks posed by alternative pesticides to tropical marine organisms, the effects of three insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil, propiconazole) were tested on larval metamorphosis of the coral .

View Article and Find Full Text PDF

Conventional photosystem II (PSII) herbicides applied in agriculture can pose significant environmental risks to aquatic environments. In response to the frequent detection of these herbicides in the Great Barrier Reef (GBR) catchment area, transitions towards 'alternative' herbicides are now widely supported. However, water quality guideline values (WQGVs) for alternative herbicides are lacking and their potential ecological impacts on tropical marine species are generally unknown.

View Article and Find Full Text PDF

Behavioral responses to environmental factors at the planktonic larval stage can have a crucial influence on habitat selection and therefore adult distributions in many benthic organisms. Reef-building corals show strong patterns of zonation across depth or underwater topography, with different suites of species aggregating in different light environments. One potential mechanism driving this pattern is the response of free-swimming larvae to light.

View Article and Find Full Text PDF

Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae.

View Article and Find Full Text PDF

Despite the ecological significance of the mutualistic relationship between Symbiodiniaceae and reef-building corals, the molecular interactions during establishment of this relationship are not well understood. This is particularly true of the transcriptional changes that occur in the symbiont. In the current study, a dual RNA-sequencing approach was used to better understand transcriptional changes on both sides of the coral-symbiont interaction during the colonization of Acropora tenuis by a compatible Symbiodiniaceae strain (Cladocopium goreaui; ITS2 type C1).

View Article and Find Full Text PDF
Article Synopsis
  • Tropical marine habitat-builders like calcifying green algae, specifically Halimeda opuntia, face significant threats from climate change (warming and acidification) and herbicides like diuron.
  • The study reveals that acclimation to future climate scenarios significantly influences algae's physiological responses, with non-acclimated algae exhibiting more severe negative effects on photosynthesis and calcification.
  • Results indicate the need for updated guidelines on water contaminants, emphasizing that both climate change and water quality must be addressed for the health of these vital marine organisms.
View Article and Find Full Text PDF

Research with coral embryos and larvae often requires laborious manual counting and sorting of individual specimens, usually via microscopy. Because many coral species spawn only once per year during a narrow temporal window, sample processing is a time-limiting step for research on the early life-history stages of corals. Flow cytometry, an automated technique for measuring and sorting particles, cells, and cell-clusters, is a potential solution to this bottleneck.

View Article and Find Full Text PDF

Herbicide contamination of nearshore tropical marine ecosystems is widespread and persistent; however, risks posed by most 'alternative' herbicides to tropical marine microalgae remain poorly understood. Experimental exposures of the important but understudied microalgae Rhodomonas salina to seven individual Photosystem II (PSII) inhibitor herbicides (diuron, metribuzin, hexazinone, tebuthiuron, bromacil, simazine, propazine) led to inhibition of effective quantum yield (ΔF/F') and subsequent reductions in specific growth rates (SGR). The concentrations which reduced ΔF/F' by 50% (EC) ranged from 1.

View Article and Find Full Text PDF