Publications by authors named "Andrew P Hodges"

Article Synopsis
  • - The text discusses a novel molecular electronics chip that utilizes single molecules as general-purpose sensors, allowing for ultra-miniaturized electronic circuits.
  • - The device features a semiconductor chip with an array of synthetic molecular wires connected to nanoelectrodes, enabling real-time monitoring of molecular interactions at high speeds (1,000 frames per second).
  • - It demonstrates the ability to measure single-molecule interactions, such as those involving DNA, antibodies, and enzymes, with exceptional sensitivity and without needing labels, which can enhance various applications in biosensing and diagnostics.
View Article and Find Full Text PDF

Variations in many genes linked to sporadic Alzheimer's disease (AD) show abundant expression in microglia, but relationships among these genes remain largely elusive. Here, we establish isogenic human ESC-derived microglia-like cell lines (hMGLs) harboring AD variants in CD33, INPP5D, SORL1, and TREM2 loci and curate a comprehensive atlas comprising ATAC-seq, ChIP-seq, RNA-seq, and proteomics datasets. AD-like expression signatures are observed in AD mutant SORL1 and TREM2 hMGLs, while integrative multi-omic analysis of combined epigenetic and expression datasets indicates up-regulation of APOE as a convergent pathogenic node.

View Article and Find Full Text PDF

One approach to understanding how tissue-specific cancers emerge is to determine the requirements for "reprograming" such neoplastic cells back to their developmentally normal primordial pre-malignant epiblast-like pluripotent state and then scrutinizing their spontaneous reconversion to a neoplasm, perhaps rendering salient the earliest pivotal oncogenic pathway(s) (before other aberrations accumulate in the adult tumor). For the prototypical malignancy anaplastic thyroid carcinoma (ATC), we found that tonic RAS reduction was obligatory for reprogramming cancer cells to a normal epiblast-emulating cells, confirmed by changes in their transcriptomic and epigenetic profiles, loss of neoplastic behavior, and ability to derive normal somatic cells from their "epiblast organoids." Without such suppression, ATCs re-emerged from the clones.

View Article and Find Full Text PDF

Choroid plexus carcinoma (CPC) is a rare brain tumor that occurs most commonly in very young children and has a dismal prognosis despite intensive therapy. Improved outcomes for patients with CPC depend on a deeper understanding of the mechanisms underlying the disease. Here we developed transgenic models of CPCs by activating the oncogene and deleting the tumor suppressor gene in murine neural stem cells or progenitors.

View Article and Find Full Text PDF

Objective: Passive administration of broadly neutralizing antibodies has been shown to protect against both vaginal and rectal challenge in the simian/human immunodeficiency virus (SHIV)/macaque model of HIV transmission. However, the relative efficacy of antibody against the two modes of exposure is unknown and, given differences in the composition and immunology of the two tissue compartments, this is an important gap in knowledge. To investigate the significance of the challenge route for antibody-mediated protection, we performed a comparative protection study in macaques using the highly potent human monoclonal antibody, PGT126.

View Article and Find Full Text PDF

Background: Inflammatory disease processes involve complex and interrelated systems of mediators. Determining the causal relationships among these mediators becomes more complicated when two, concurrent inflammatory conditions occur. In those cases, the outcome may also be dependent upon the timing, severity and compartmentalization of the insults.

View Article and Find Full Text PDF

Background: Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems.

View Article and Find Full Text PDF

Unlabelled: Uropathogenic Escherichia coli (UPEC) strains, which cause the majority of uncomplicated urinary tract infections (UTIs), carry a unique assortment of virulence or fitness genes. However, no single defining set of virulence or fitness genes has been found in all strains of UPEC, making the differentiation between UPEC and fecal commensal strains of E. coli difficult without the use of animal models of infection or phylogenetic grouping.

View Article and Find Full Text PDF

A Bayesian network expansion algorithm called BN+1 was developed to identify undocumented gene interactions in a known pathway using microarray gene expression data. In our recent paper, the BN+1 algorithm has been successfully used to identify key regulators including uspE in the E. coli ROS pathway and biofilm formation.

View Article and Find Full Text PDF

Signaling and regulatory pathways that guide gene expression have only been partially defined for most organisms. However, given the increasing number of microarray measurements, it may be possible to reconstruct such pathways and uncover missing connections directly from experimental data. Using a compendium of microarray gene expression data obtained from Escherichia coli, we constructed a series of Bayesian network models for the reactive oxygen species (ROS) pathway as defined by EcoCyc.

View Article and Find Full Text PDF

Vaccines are among the most efficacious and cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The vaccine investigation and online information network (VIOLIN) is a web-based central resource, allowing easy curation, comparison and analysis of vaccine-related research data across various human pathogens (e.g.

View Article and Find Full Text PDF