Publications by authors named "Andrew P E York"

Oxygen storage and release is a foundational part of many key pathways in heterogeneous catalysis, such as the Mars-van Krevelen mechanism. However, direct measurement of oxygen storage capacity (OSC) is time-consuming and difficult to parallelise. To accelerate the discovery of stable high OSC rare-earth doped ceria-zirconia oxygen storage catalysts, a high-throughput robotic-based co-precipitation synthesis route was coupled with sequentially automated powder X-ray diffraction (PXRD), Raman and thermogravimetric analysis (TGA) characterisation of the resulting materials libraries.

View Article and Find Full Text PDF

We use neutron imaging to observe the adsorption/absorption of hydrogen within a packed catalyst bed of a Pd/C catalyst at a spatial and temporal resolution of ∼430 μm and a ∼9 s respectively. Additionally, the H/D exchange process across the catalyst bed is followed in real time.

View Article and Find Full Text PDF

The relative surface affinities of pyridine within microporous HZSM-5 zeolites are explored using two-dimensional H nuclear magnetic resonance (NMR) relaxation time measurements. The dimensionless ratio of longitudinal-to-transverse nuclear spin relaxation times T/T is shown to exhibit strong sensitivity to the silica/alumina ratio (SAR) of these zeolites, which is indicative of material acidity. This trend is interpreted in terms of increased pyridine surface affinity with decreasing SAR.

View Article and Find Full Text PDF

Platinum group metals such as palladium and rhodium based catalysts are currently being implemented in gasoline particulate filter (GPF) autoexhaust after treatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. Thisstudy follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF.

View Article and Find Full Text PDF

The transient nature of the internal pore structure of particulate wall flow filters, caused by the continuous deposition of particulate matter, makes studying their flow and filtration characteristics challenging. In this article we present a new methodology and first experimental demonstration of time resolved in-situ synchrotron micro X-ray computed tomography (micro-CT) to study aerosol filtration. We directly imaged in 4D (3D plus time) pore scale deposits of TiO2 nanoparticles (nominal mean primary diameter of 25 nm) with a pixel resolution of 1.

View Article and Find Full Text PDF

Different supporting procedures were followed to alter the nanoparticle-support interactions (NPSI) in two CoO/AlO catalysts, prepared using the reverse micelle technique. The catalysts were tested in the dry preferential oxidation of carbon monoxide (CO-PrOx) while their phase stability was monitored using four complementary in situ techniques, viz., magnet-based characterization, PXRD, and combined XAS/DRIFTS, as well as quasi in situ XPS, respectively.

View Article and Find Full Text PDF

It is demonstrated that light elements, including lithium and boron atoms, can take residence in the octahedral (interstitial) site of a Pd lattice by modifying the electronic properties of the metal nanoparticles, and hence the adsorptive strength of a reactant. The blocking of the sub-surface sites to H in the modified materials results in significantly higher selectivity for the partial catalytic hydrogenation of acetylene to ethylene.

View Article and Find Full Text PDF

Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n, yield stress τ, and consistency factor k, by analysis of the signal in q-space.

View Article and Find Full Text PDF

The diffusion of ammonia in commercial NH3-SCR catalyst Cu-CHA was measured and compared with H-CHA using quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations to assess the effect of counterion presence on NH3 mobility in automotive emission control relevant zeolite catalysts. QENS experiments observed jump diffusion with a jump distance of 3 Å, giving similar self-diffusion coefficient measurements for both Cu- and H-CHA samples, in the range of ca. 5-10 × 10(-10) m(2) s(-1) over the measured temperature range.

View Article and Find Full Text PDF

Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported.

View Article and Find Full Text PDF