Aquatic decomposition, as a forensic discipline, has been largely under-investigated as a consequence of the highly complex and influential variability of the water environment. The limitation to the adaptability of scenario specific results justifies the necessity for experimental research to increase our understanding of the aquatic environment and the development of post-mortem submersion interval (PMSI) methods of estimation. This preliminary research aims to address this contextual gap by assessing the variation in the bacterial composition of aquatic biofilms as explained by water parameter measurements over time, associated with clothed and bare decomposing remains.
View Article and Find Full Text PDFBackground: The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish.
View Article and Find Full Text PDFThe mucosal surfaces of fish play numerous roles including, but not limited to, protection against pathogens, nutrient digestion and absorption, excretion of nitrogenous wastes and osmotic regulation. During infection or disease, these surfaces act as the first line of defense, where the mucosal immune system interacts closely with the associated microbiota to maintain homeostasis. This study evaluated microbial changes across the gut and skin mucosal surfaces in yellowtail kingfish displaying signs of gut inflammation, as well as explored the host gene expression in these tissues in order to improve our understanding of the underlying mechanisms that contribute to the emergence of these conditions.
View Article and Find Full Text PDFThe mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host-microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity.
View Article and Find Full Text PDFThe capacity to reliably identify fish eggs is critical in the application of the daily egg production method (DEPM) to estimate biomass of commercially important species. This application has largely been confined to species that have easily identifiable eggs. Various molecular strategies have been used to extend the DEPM to a broader range of species, with recent approaches like in situ hybridization (ISH) that preserves the integrity of whole eggs, embryos or larvae recommended as a suitable alternative over destructive procedures like PCR.
View Article and Find Full Text PDFObjective: Patients infected with develop chronic gastritis with a subgroup progressing to further complications. The role of microbiota from the oral cavity swallowed with saliva and either transiting the stomach or persisting in the gastric mucosa is uncertain. It is also not known whether the bacterial community differs in luminal and mucosal niches.
View Article and Find Full Text PDFThe human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status.
View Article and Find Full Text PDFUnderstanding the behaviour of opportunistic pathogens such as Staphylococcus aureus in their natural human niche holds great medical interest. With the development of sensitive molecular methods and deep-sequencing technology, it is now possible to robustly assess the global transcriptome of bacterial species in their human habitat. However, as the genomes of the colonizing strains are often not available compiling the pan-genome for the species of interest may provide an effective method to reliably and rapidly compile the transcriptome of a bacterial species.
View Article and Find Full Text PDFThe cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes.
View Article and Find Full Text PDFUnlabelled: Osteomyelitis is a difficult-to-eradicate bone infection typically caused by Staphylococcus aureus. In this study, we investigated the in vivo transcriptional adaptation of S. aureus during bone infection.
View Article and Find Full Text PDFThe anterior nares are an important reservoir for opportunistic pathogens and commensal microorganisms. A barcoded Illumina paired-end sequencing method targeting the 16S ribosomal RNA V1-2 hypervariable region was developed to compare the bacterial diversity of the anterior nares across distinct human populations (volunteers from Germany vs a Babongo Pygmy tribe, Africa). Of the 251 phylotypes detected, 231 could be classified to the genus level and 109 to the species level, including the unambiguous identification of the ubiquitous Staphylococcus aureus and Moraxella catarrhalis.
View Article and Find Full Text PDFThe structure of the human gut microbial community is determined by host genetics and environmental factors, where alterations in its structure have been associated with the onset of different diseases. Establishing a defined human gut microbial community within inbred rodent models provides a means to study microbial-related pathologies, however, an in-depth comparison of the established human gut microbiota in the different models is lacking. We compared the efficiency of establishing the bacterial component of a defined human microbial community within germ-free (GF) rats, GF mice, and antibiotic-treated specific pathogen-free mice.
View Article and Find Full Text PDFThe human gastrointestinal tract microbiota, despite its key roles in health and disease, remains a diverse, variable and poorly understood entity. Current surveys reveal a multitude of undefined bacterial taxa and a low diversity of methanogenic archaea. In an analysis of the microbiota in colonic mucosal biopsies from patients with inflammatory bowel disease we found 16S rDNA sequences representing a phylogenetically rich diversity of halophilic archaea from the Halobacteriaceae (haloarchaea), including novel phylotypes.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
June 2009
A strictly anaerobic, Gram-positive, short-rod/coccobacillus-shaped bacterial strain, designated 7-10-1-b(T), was isolated from the colon of a patient suffering from acute Crohn's disease. The isolate formed small, pale-white, semi-translucent colonies on solid cultivation media. The strain was catalase-positive and metabolized only a small number of carbon sources.
View Article and Find Full Text PDFThe gastric fluid of six bottlenose dolphins and the faeces of four polar bears from the same oceanarium were examined for the presence of Helicobacter. As detected by PCR, all dolphins and 8/12 samples collected from polar bears were positive for Helicobacter. Novel sequence types were identified in samples collected from these animals of which several were unique to either the dolphins or the polar bears.
View Article and Find Full Text PDFHelicobacter species are widely distributed in the gastrointestinal system of humans and many animal taxa. Investigations of natural infections are essential to elucidating their role within the host. The feces of fur seals Arctocephalus pusillus doriferus and sea lions Neophoca cinerea from 3 separate captive populations, as well as a wild colony from Kangaroo Island, Australia, were examined for the occurrence of Helicobacter spp.
View Article and Find Full Text PDFWe describe the first case of gastritis in a male Australian sea lion (Neophoca cinerea) in which members of the family Helicobacteraceae, particularly the genus Wolinella, were detected. The sea lion exhibited clinical signs of gastrointestinal disease, including abdominal pain, lack of appetite, and lethargy. Examination of one ileal and five gastric biopsy specimens collected over a 10-year period revealed persistent fibrosis and/or superficial focal erosion and ulceration of the lamina propria.
View Article and Find Full Text PDFWith the emergence of Helicobacter species as agents of gastrointestinal disease within a broad range of animal hosts, there is growing awareness of the need to identify such species and the potential role(s) they play within the intestine. Of interest in this study are captive seals and sea lions, where close proximity to one another may enhance the transmission of pathogens, in particular Helicobacter. The feces of several captive Australian sea lions and Australian fur seals were assessed for the occurrence of Helicobacter over 31 days.
View Article and Find Full Text PDF