Recent investigations on how people derive meaning from language have focused on task-dependent shifts between two cognitive systems. The symbolic (amodal) system represents meaning as the statistical relationships between words. The embodied (modal) system represents meaning through neurocognitive simulation of perceptual or sensorimotor systems associated with a word's referent.
View Article and Find Full Text PDFSince its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused multiple epidemics in the United States. When medical treatments for the virus were still emerging and a vaccine was not yet available, state and local governments sought to limit its spread by enacting various social-distancing interventions, such as school closures and lockdowns; however, the effectiveness of these interventions was unknown. We applied an established, semimechanistic Bayesian hierarchical model of these interventions to the spread of SARS-CoV-2 from Europe to the United States, using case fatalities from February 29, 2020, up to April 25, 2020, when some states began reversing their interventions.
View Article and Find Full Text PDFBackground: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics, electronics, and dynamical systems. After the teams shared their progress at the conclusion of an 18-month period, the ONR decided to fund a joint applied project in the Navy that integrated those systems on the subject matter of electronic circuits.
View Article and Find Full Text PDFBackground: This study investigated learning outcomes and user perceptions from interactions with a hybrid intelligent tutoring system created by combining the AutoTutor conversational tutoring system with the Assessment and Learning in Knowledge Spaces (ALEKS) adaptive learning system for mathematics. This hybrid intelligent tutoring system (ITS) uses a service-oriented architecture to combine these two web-based systems. Self-explanation tutoring dialogs were used to talk students through step-by-step worked examples to algebra problems.
View Article and Find Full Text PDFResearchers in the cognitive and affective sciences investigate how thoughts and feelings are reflected in the bodily response systems including peripheral physiology, facial features, and body movements. One specific question along this line of research is how cognition and affect are manifested in the dynamics of general body movements. Progress in this area can be accelerated by inexpensive, non-intrusive, portable, scalable, and easy to calibrate movement tracking systems.
View Article and Find Full Text PDFWe present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film.
View Article and Find Full Text PDFLatent semantic analysis (LSA) is a statistical technique for representing word meaning that has been widely used for making semantic similarity judgments between words, sentences, and documents. In order to perform an LSA analysis, an LSA space is created in a two-stage procedure, involving the construction of a word frequency matrix and the dimensionality reduction of that matrix through singular value decomposition (SVD). This article presents LANSE, an SVD algorithm specifically designed for LSA, which allows extremely large matrices to be processed using off-the-shelf computer hardware.
View Article and Find Full Text PDFIt is often assumed that engaging in a one-on-one dialogue with a tutor is more effective than listening to a lecture or reading a text. Although earlier experiments have not always supported this hypothesis, this may be due in part to allowing the tutors to cover different content than the noninteractive instruction. In 7 experiments, we tested the interaction hypothesis under the constraint that (a) all students covered the same content during instruction, (b) the task domain was qualitative physics, (c) the instruction was in natural language as opposed to mathematical or other formal languages, and (d) the instruction conformed with a widely observed pattern in human tutoring: Graesser, Person, and Magliano's 5-step frame.
View Article and Find Full Text PDFAutoTutor is a learning environment that tutors students by holding a conversation in natural language. AutoTutor has been developed for Newtonian qualitative physics and computer literacy. Its design was inspired by explanation-based constructivist theories of learning, intelligent tutoring systems that adaptively respond to student knowledge, and empirical research on dialogue patterns in tutorial discourse.
View Article and Find Full Text PDF