Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence).
View Article and Find Full Text PDFCellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells.
View Article and Find Full Text PDFIntroduction: Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors.
View Article and Find Full Text PDFDiscov Oncol
October 2021
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance.
View Article and Find Full Text PDFGenetic and environmental factors related to maternal diet may predispose offspring to serious diseases. However, consequences of a maternal diet intervention during gestation and lactation, and its association with caloric restriction after weaning on the progeny are not completely known. In this context, the goal of the present study was to investigate how different maternal diets, control (CONT), hypercaloric (HD) or restrictive (RD) diets during gestation and lactation, may affect the metabolism and behavior of the offspring that was also submitted to RD.
View Article and Find Full Text PDFThe fragile histidine triad (FHIT) gene encloses an active common chromosomal fragile site, FRA3B. This gene is known to be associated with genomic instability, apoptosis and DNA damage. FHIT disturbances have been related to carcinogenesis in different types of human tumor.
View Article and Find Full Text PDFGlioblastoma (GBM) is a very aggressive tumor that has not had substantial therapeutic improvement since the introduction of temozolomide (TMZ) in combination with radiotherapy. Combining TMZ with other chemotherapeutic agents is a strategy that could be further explored for GBM. To search for molecular predictors of TMZ resistance, the TCGA (The Cancer Genome Atlas) database was utilized to assess the impact of specific genes on TMZ response.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM.
View Article and Find Full Text PDFChemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug.
View Article and Find Full Text PDFBackground Aims: The purpose of this study was to investigate whether the secretome of human adipose-derived stem cells (hADSC) affects human glioblastoma (GBM) cancer stem cell (CSC) subpopulation or has any influence on drug resistance and cell migration, evaluating the safety of hADSCs for novel cancer therapies.
Methods: hADSCs were maintained in contact with fresh culture medium to produce hADSCs conditioned medium (CM). GBM U87 cells were cultured with CM and sphere formation, expression of genes related to resistance and CSCs-MGMT, OCT4, SOX2, NOTCH1, MSI1-and protein expression of OCT4 and Nanog were analyzed.