Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing.
View Article and Find Full Text PDFFine sediment continues to be a major diffuse pollution concern with its multiple effects on aquatic ecosystems. Mass concentrations (and loads) of fine sediment are usually measured and modelled, apparently with the assumption that environmental effects of sediment are predictable from mass concentrations. However, some severe impacts of fine sediment may not correlate well with mass concentration, notably those related to light attenuation by suspended particles.
View Article and Find Full Text PDFFallout (137)Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of (137)Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia.
View Article and Find Full Text PDFTo reduce sediment exports discharging to the Great Barrier Reef (GBR), it is essential to identify the sources of exported sediment. We used modelling of spatial sediment budgets (the SedNet model) to identify sources and deposition of sediment as it is transported through river networks. Catchments with high levels of land clearing, cattle grazing and cropping show the largest increases in sediment export compared with natural conditions.
View Article and Find Full Text PDFClearing of native vegetation and replacement with cropping and grazing systems has increased nutrient exports to the Great Barrier Reef (GBR) to a level many times the natural rate. We present a technique for modelling nutrient transport, based on material budgets of river systems, and use it to identify the patterns and sources of nutrients exported. The outputs of the model can then be used to help prioritise catchment areas and land uses for management and assess various management options.
View Article and Find Full Text PDF