Exposure to relatively high levels of inorganic arsenic (iAs) is associated with detrimental effects on human health, including cancer and diabetes. The effects of lower-level exposures are less clear, and gaps in the literature exist as to the effects of iAs exposure on neurodevelopment. The current study assessed the effects of perinatal iAs exposure on rodent neurodevelopment and behavior.
View Article and Find Full Text PDFOne characteristic of Alzheimer's disease (AD) is excessive accumulation of amyloid-β (Aβ) in the brain. Aβ brain accumulation is, in part, due to a reduction in Aβ clearance from the brain across the blood-brain barrier. One key element that contributes to Aβ brain clearance is P-glycoprotein (P-gp) that transports Aβ from brain to blood.
View Article and Find Full Text PDFMethylmercury (MeHg) neurotoxicity is thought to be mediated, in part, by dysregulation of calcium (Ca(2+)) homeostasis, a mechanism that may also slowly and progressively degrade neuronal function during normal aging. Longitudinal studies of MeHg exposure provide a powerful approach to studying neural and behavioral mechanisms by which both MeHg toxicity and aging affect motor function. Wheel-running and rotarod performance were assessed in two age groups of BALB/c mice chronically exposed to 0 or 1.
View Article and Find Full Text PDFAge-related deficits in motor and cognitive functioning may be driven by perturbations in calcium (Ca(2+)) homeostasis in nerve terminals, mechanisms that are also thought to mediate the neurotoxicity of methylmercury (MeHg). Calcium-channel blockers (CCBs) protect against MeHg toxicity in adult mice, but little is known about their efficacy in other age groups. Two age groups of BALB/c mice were exposed to 0 or 1.
View Article and Find Full Text PDFRationale: Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, causes locomotor hyperactivity, aberrant prepulse inhibition and impaired reversal learning among other deficits. There are numerous clinical and pre-clinically uses of NMDAR antagonists and a growing need to characterize their neurobehavioral effects.
Objectives: The present study was designed to characterize 1) ketamine's effect on incremental repeated acquisition (IRA), a procedure that taps multiple neurobehavioral functions and has performance measures correlated with IQ in humans, and 2) the extent to which clozapine (CLZ) and haloperidol (HAL) block ketamine's detrimental effects.
Adolescence is characterized by neural and behavior development that includes increases in novel experiences and impulsive choice. Experimental rodent models can characterize behavior phenotypes that typify adolescence. The present experiment was designed to characterize differences between adolescent (post-natal day (PND) 34-60) and adult (PND 70-96) BALB/c mice using a response-initiated spatial discrimination reversal (SDR) and incremental repeated acquisition of response chains (IRA) procedures.
View Article and Find Full Text PDF