Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same.
View Article and Find Full Text PDFAll animals that operate within the atmospheric boundary layer need to respond to aerial turbulence. Yet little is known about how flying animals do this because evaluating turbulence at fine scales (tens to approx. 300 m) is exceedingly difficult.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Cyclones can cause mass mortality of seabirds, sometimes wrecking thousands of individuals. The few studies to track pelagic seabirds during cyclones show they tend to circumnavigate the strongest winds. We tracked adult shearwaters in the Sea of Japan over 11 y and found that the response to cyclones varied according to the wind speed and direction.
View Article and Find Full Text PDFWind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here, we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots breeding on Skomer Island as our study system.
View Article and Find Full Text PDFThe Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2016
One of the defining features of the aerial environment is its variability; air is almost never still. This has profound consequences for flying animals, affecting their flight stability, speed selection, energy expenditure and choice of flight path. All these factors have important implications for the ecology of flying animals, and the ecosystems they interact with, as well as providing bio-inspiration for the development of unmanned aerial vehicles.
View Article and Find Full Text PDF