Publications by authors named "Andrew N Rider"

Graphitic nanoplatelets (GNPs) have been treated using an ultrasonicated ozonolysis procedure to produce stable aqueous dispersions that facilitate deposition of thin films using electrophoretic deposition. The thin GNP films were then coated with zero valence (ZV) iron nanocubes using a pulsed electrodeposition technique. Characterization of the ZV-iron coating with deposition time revealed that the changing magnetic character of the ferromagnetic-graphitic hybrid material was related to the nucleation density and growth of the ZV-iron nanocubes.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs) represent a relatively new class of materials that provides alternative electrical and thermal properties to the carbon analogue. The high chemical and thermal stability and large band gap combined with high electrical resistance make BNNTs desirable in several thin-film applications. In this study, stable BNNT and hexagonal boron nitride (hBN) particle dispersions have been developed using environmentally friendly advanced oxidation processing (AOP) that can be further modified for electrophoretic deposition (EPD) to produce thin films.

View Article and Find Full Text PDF

Epoxy resins are the most widely used systems for structural composite applications; however, they lack fracture toughness, impact strength and peel strength due to high cross-linking densities. Use of conventional toughening agents to combat this can lead to reductions in mechanical, thermal and processability properties desirable for bonded composite applications. In this work, an asymmetric triblock copolymer of poly(styrene)poly(butadiene)poly(methylmethacrylate) was used to modify an epoxy resin system, with the materials processed using both vacuum bag and positive pressure curing techniques.

View Article and Find Full Text PDF

Functionalization of carbon nanomaterials is often a critical step that facilitates their integration into larger material systems and devices. In the as-received form, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs), may contain large agglomerates. Both agglomerates and impurities will diminish the benefits of the unique electrical and mechanical properties offered when CNTs or GNPs are incorporated into polymers or composite material systems.

View Article and Find Full Text PDF

The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation.

View Article and Find Full Text PDF

Carbon nanotube/glass fiber hierarchical composite structures have been produced using an electrophoretic deposition (EPD) approach for integrating the carbon nanotubes (CNTs) into unidirectional E-glass fabric, followed by infusion of an epoxy polymer matrix. The resulting composites show a hierarchical structure, where the structural glass fibers, which have diameters in micrometer range, are coated with CNTs having diameters around 10-20 nm. The stable aqueous dispersions of CNTs were produced using a novel ozonolysis and ultrasonication technique that results in dispersion and functionalization in a single step.

View Article and Find Full Text PDF