Visual analysis of the gene delivery process when using invasive bacteria as a vector has been conventionally performed using standard light and fluorescence microscopy. These microscopes can provide basic information on the invasiveness of the bacterial vector including the ability of the vector to successfully adhere to the cell membrane. Standard microscopy techniques however fall short when finer details including membrane attachment as well as internalization into the cytoplasm are desired.
View Article and Find Full Text PDFGene delivery using invasive bacteria as vectors is a robust method that is feasible for plasmid and artificial chromosome DNA construct delivery to human cells presenting β1 integrin receptors. This technique is relatively underutilized owing to the inefficiency of gene transfer to targeted cell populations. Bacterial vectors must successfully adhere to the cell membrane, internalize into the cytoplasm, undergo lysis, and deliver DNA to the nucleus.
View Article and Find Full Text PDFWhen recombineering bacterial artificial chromosomes (BACs), it is common practice to design the ends of the donor molecule with 50 bp of homology specifying its insertion site. We demonstrate that desired recombinants can be produced using intermolecular homologies as short as 15 bp. Although the use of shorter donor end regions decreases total recombinants by several fold, the frequency of recombinants with correctly inserted donor molecules was high enough for easy detection by simple polymerase chain reaction (PCR) screening.
View Article and Find Full Text PDF