We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious β-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (R) t-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials.
View Article and Find Full Text PDFOur previously reported efforts to produce an orally active β-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2018
The World Health Organization has identified antimicrobial resistance as a global public health threat since the prevalence and spread of antibiotic resistance among bacterial pathogens worldwide are staggering. Carbapenems, such as imipenem and meropenem, have been used to treat multidrug-resistant bacteria; however, since the development of resistance to carbapenems, β-lactam antibiotics in combination with β-lactamase inhibitors (BLI) has been one of the most successful strategies to enhance the activity of β-lactam antibiotics. Relebactam (REL) is a new BLI which has been found to inhibit class A and class C β-lactamases REL has been reported to restore imipenem's activity against both imipenem-resistant and Reported here are the efficacy studies of the imipenem-cilastatin (IMI)-REL combination in mouse models of disseminated and pulmonary infection caused by imipenem-resistant clinical isolates of and The combination was also evaluated in a delayed pulmonary model of infection.
View Article and Find Full Text PDFThe clinical success of the echinocandins, which can only be administered parentally, has validated β-1,3-glucan synthase (GS) as an antifungal target. Semi-synthetic modification of enfumafungin, a triterpene glycoside natural product, was performed with the aim of producing a new class of orally active GS inhibitors. Replacement of the C2 acetoxy moiety with various heterocycles did not improve GS or antifungal potency.
View Article and Find Full Text PDFAntimicrob Agents Chemother
July 2011
Neonatal candidiasis is an increasingly common occurrence causing significant morbidity and mortality and a higher risk of dissemination to the central nervous system (CNS) than that seen with older patients. The current understanding of optimal antifungal therapy in this setting is limited. We have developed a model of disseminated candidiasis with CNS involvement in juvenile mice to assess the efficacy of the echinocandin caspofungin relative to amphotericin B (AmB).
View Article and Find Full Text PDFBridged monobactam beta-lactamase inhibitors were prepared and evaluated as potential partners for combination with imipenem to overcome class C beta-lactamase mediated resistance. The (S)-azepine analog 2 was found to be effective in both in vitro and in vivo assays and was selected for preclinical development.
View Article and Find Full Text PDFDiaryl-(4-piperidinyl)-pyrrole derivatives bearing cyclic amine substituents have been synthesized and evaluated as anticoccidial agents. Improvements in potency of Et-PKG inhibition, such as azetidine derivative 3a, and broad spectrum anticoccidial activities in feed, such as morpholine derivative 8c, have been achieved.
View Article and Find Full Text PDFCoccidiosis is one of the more common and costly diseases in poultry that is caused by various Eimeria species. In our quest to discover coccidiostats from natural products, we discovered a microbial fermentation extract that exhibited in vivo anticoccidial activity. Fractionation of this extract led to the discovery of two potent antiprotozoals, emecorrugatin A (1) and coccidiostatin A (2).
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2007
A novel oxazolidinone, AM 7359, was evaluated in two mouse models of Staphylococcus aureus infection. AM 7359 and linezolid were equally efficacious in a methicillin-susceptible S. aureus organ burden model and a methicillin-resistant S.
View Article and Find Full Text PDFDiaryl imidazo[1,2-a]pyridine derivatives, such as 6a and 7i, have been synthesized and found to be potent inhibitors of parasite PKG activity. The most potent compounds are the 7-isopropylaminomethyl analog 6a and 2-isopropylamino analog 7i. These compounds are also fully active in in vivo assay as anticoccidial agents at 25 ppm in feed.
View Article and Find Full Text PDFCompounds 10a-10d and 10i are very potent inhibitors of Eimeria tenella cGMP-dependent protein kinase (0.081-0.32 nM) and are very efficacious antiparasitic agents in vivo when administered to chickens at 12.
View Article and Find Full Text PDF2-(4-Fluorophenyl)-3-(4-pyridinyl)-5-substituted pyrroles were prepared and evaluated as anticoccidial agents in both in vitro and in vivo assays. Among the compounds evaluated, the dimethylamine-substituted pyrrole 19a is the most potent inhibitor of Eimeria tenella PKG (cGMP-dependent protein kinase). Further SAR studies on the side chain of the 2-pyrrolidine nitrogen did not enhance in vivo anticoccidial activity.
View Article and Find Full Text PDFCompounds 10a (IC50 110 pM) and 21 (IC50 40 pM) are the most potent inhibitors of Eimeria tenella cGMP-dependent protein kinase activity reported to date and are efficacious in the in vivo antiparasitic assay when administered to chickens at 12.5 and 6.25 ppm levels in the feed.
View Article and Find Full Text PDFDiaryl-(4-piperidinyl)-pyrrole derivatives bearing hydroxylated N-alkyl substituents have been synthesized and evaluated as anticoccidial agents. High potency in Et-PKG inhibition and broad-spectrum anticoccidial activities have been observed on compounds, such as 4b and 5h, which are fully efficacious in vivo at 50 ppm in feed.
View Article and Find Full Text PDFSeveral analogs of 2,3-diaryl pyrroles were synthesized and evaluated as inhibitors of Eimeria tenella cGMP-dependent protein kinase and in in vivo anticoccidial assays. A 4-fluorophenyl group enhances both in vitro and in vivo activities. The most potent analogs are the 5-(N-methyl, N-ethyl, and N-methylazetidine methyl) piperidyl derivatives 12, 23, and 34.
View Article and Find Full Text PDFThe trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (Compound 1) inhibits the growth of Eimeria spp. both in vitro and in vivo. The molecular target of Compound 1 was identified as cGMP-dependent protein kinase (PKG) using a tritiated analogue to purify a approximately 120-kDa protein from lysates of Eimeria tenella.
View Article and Find Full Text PDF