Publications by authors named "Andrew Metters"

This study describes the physicochemical characterization, stabilization, and formulation design of SM4-AC, an acrylodan-labeled glucose/galactose-binding protein for use in a continuous glucose monitoring device. The physical stability profile of SM4-AC as a function of pH and temperature was monitored using a combination of biophysical techniques and the resulting physical stability profile was visualized using an empirical phase diagram. Forced degradation chemical stability studies (Asn deamidation, Met oxidation) of SM4-AC were performed using a combination of capillary isoelectric focusing, peptide mapping, and reversed-phase HPLC.

View Article and Find Full Text PDF

Continuous glucose monitoring (CGM) devices offer diabetes patients a convenient approach to assist in controlling blood glucose levels. A prototype CGM has been developed that uses the emission profile of a polarity-sensitive fluorophore (acrylodan) conjugated to a glucose/galactose-binding protein (SM4-AC) to measure the concentration of glucose in vivo. During development, a decrease in the devices signal intensity was observed in vivo over time, which was postulated to be result of oxidative degradation of SM4-AC.

View Article and Find Full Text PDF

Hydrogels are an important class of biomaterials for cell encapsulation and delivery, providing a physical barrier or "immuno-isolation" between the host tissue and encapsulated cells. The semi-permeable gel protects the encapsulated cells from host immune cells and/or antibody recognition while allowing facile diffusion of nutrients. However, a previously un-addressed problem is that highly permissive hydrogels cannot exclude the infiltration of soluble immune-mediators, such as pro-inflammatory cytokines that are highly expressed in wounded environments in vivo.

View Article and Find Full Text PDF

Multiple-protein delivery has been proven to be a critical consideration for promoting tissue regeneration. Many polymeric composite biomaterials have been designed and used for modulating dual-protein delivery to enhance tissue regeneration in vitro or in vivo. However, the fabrication conditions and low water contents within the portions of these composite matrices that determine protein release rates are not optimal for maintaining the stability of encapsulated macromolecular therapeutics.

View Article and Find Full Text PDF

Photoencapsulation of protein therapeutics is very attractive for preparing biomolecule-loaded hydrogels for a variety of biomedical applications. However, detrimental effects of highly active radical species generated during photoencapsulation must be carefully evaluated to maintain efficient hydrogel cross-linking while preserving the structure and bioactivity of encapsulated biomolecules. Here, we examine the free-radical-mediated inactivation and incomplete release of proteins from photocurable hydrogels utilizing lysozyme as a conservative model system.

View Article and Find Full Text PDF

Affinity hydrogels based on poly(ethylene glycol) diacrylate and a metal-ion-chelating ligand, glycidyl methacrylate-iminodiacetic acid, have been developed to systematically decrease protein release rates from hydrophilic tissue engineering scaffolds formed in situ. In the current work, tunable and sustained release of a model protein, hexa-histidine tagged green fluorescence protein (hisGFP), is accomplished by judiciously increasing ligand:protein ratio or replacing low-affinity nickel ions with high-affinity copper ions. Agreement between theoretical predictions of a reaction-diffusion model and experimental measurements confirm metal- ion-mediated sustained protein release from these affinity hydrogels is governed by equilibrium protein-ligand binding affinity (dissociation constant, Kd) as well as protein-ligand dissociation kinetics (protein debinding rate constant, k off).

View Article and Find Full Text PDF

Triblock copolymers of functionalized poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-b-PEG-b-PLA) have been widely investigated as precursors for fabricating resorbable polymeric drug delivery vehicles and tissue engineering scaffolds. Previous studies show degradation and erosion behavior of PLA-b-PEG-b-PLA hydrogels to rely on macromer chemistry as well as structural characteristics of the cross-linked networks. In this research, the degradation kinetics of diacrylated PLA-b-PEG-b-PLA copolymers as soluble macromers and cross-linked gels are directly compared as a function of macromer concentration, buffer pH, and ionic strength.

View Article and Find Full Text PDF

Over the past few decades, advances in hydrogel technologies have spurred development in many biomedical applications including controlled drug delivery. Many novel hydrogel-based delivery matrices have been designed and fabricated to fulfill the ever-increasing needs of the pharmaceutical and medical fields. Mathematical modeling plays an important role in facilitating hydrogel network design by identifying key parameters and molecule release mechanisms.

View Article and Find Full Text PDF

Poly(L-lactide) (PLL) has been used as a bioabsorbable material in the medical and pharmaceutical fields. The unmodified hydrophobic PLL surface generally has low cell affinity; thus, modification of PLL film surface properties is necessary to improve its use as a biomaterial. Our surface modification method involved the use of photografting and typical wet chemistry to create branched architectures containing amine functionalities on the periphery of the grafted layers.

View Article and Find Full Text PDF

The ability to spatially control cellular adhesion in a continuous manner on a biocompatible substrate is an important factor in designing new biomaterials for use in wound healing and tissue engineering applications. In this work, a novel method of engineering cell-adhesive RGD-ligand density gradients to control specific cell adhesion across a substrate is presented. Polymer brushes exhibiting spatially defined gradients in chain density are created and subsequently functionalized with RGD to create ligand density gradients capable of inducing cell adhesion on an otherwise weakly adhesive substrate.

View Article and Find Full Text PDF

Purpose: This study was conducted to investigate the cause of incomplete protein release from photopolymerized poly(ethylene glycol) (PEG) hydrogels and verify the protein-protection mechanism provided by iminodiacetic acid (IDA).

Methods: The in vitro release of bovine serum albumin (BSA) from PEG hydrogels prepared under different conditions was studied. Photoinitiator and initial protein concentrations were varied as well as the addition of IDA and metal ions.

View Article and Find Full Text PDF

A statistical-co-kinetic model has been developed to predict effects of hydrolytic or enzymatic degradation on the macroscopic properties of hydrogels formed through Michael-type addition reactions. Important parameters accounted for by the theoretical calculations are bond cleavage kinetics, microstructural network characteristics such as macromer functionality and crosslinking efficiency, and detailed analysis of degradation products. Previous work indicated the validity of this modeling approach for predicting swelling behavior of hydrolytically degradable gels during early stages of degradation and the quantitative dependence of gel degradation on kinetic and structural parameters.

View Article and Find Full Text PDF

Hydrogels were formed by conjugate addition of polyethylene glycol (PEG) multiacrylates and dithiothreitol (DTT) for encapsulation and sustained release of protein drugs; human growth hormone (hGH) was considered as an example. Prior to encapsulation, the hGH was precipitated either by Zn2+ ions or by linear PEG, to protect the hGH from reaction with the gel precursors during gelation. Precipitation by Zn2+ ions yielded precipitates that dissolved slowly and delayed release from even highly permeable gels, whereas linear PEG yielded rapidly dissolving precipitates.

View Article and Find Full Text PDF

Hydrolytically labile poly(ethylene glycol)-based hydrogels are fabricated via a Michael-type addition reaction between unsaturated acrylate moieties and nucleophilic thiols. Although these gels offer the advantage of selective, in situ polymerization and potential as biocompatible matrixes for cell and protein encapsulation, a thorough understanding of the complex structure-property relationships that control the macroscopic behaviors of these cross-linked networks before and during hydrolytic degradation does not exist. Therefore, in this work, a novel theoretical model is presented to describe the formation and hydrolytic degradation of the step-polymerized gels.

View Article and Find Full Text PDF

A number of vascular therapies could benefit from advanced methods for presentation of angiogenic growth factors, including growth of endothelium on small caliber vascular grafts and revascularization of ischemic tissue through induction of collateral vessels and microvessels. To explore methods to optimize the presentation and release of angiogenic factors in such applications in device integration and tissue repair, we studied three variant forms of vascular endothelial growth factor 121 (VEGF121), each with differential susceptibility to local cellular proteolytic activity, formulated within fibrin matrices. (1) The prototypic variant alpha2PI(1-8)-VEGF121 remains immobilized in fibrin matrices until its liberation by cell-associated enzymes, such as plasmin, that degrade the fibrin network [slow, cell-demanded release; J.

View Article and Find Full Text PDF

Multifunctional macromers based on poly(ethylene glycol) and poly(vinyl alcohol) were photopolymerized to form degradable hydrogel networks. The degradation behavior of the highly swollen gels was characterized by monitoring changes in their mass loss, degree of swelling, and compressive modulus. Experimental results show that the modulus decreases exponentially with time, while the volumetric swelling ratio increases exponentially.

View Article and Find Full Text PDF