Publications by authors named "Andrew M Ullman"

The mechanism of oxygen activation at a dicobalt bis-μ-hydroxo core is probed by the implementation of synthetic methods to isolate reaction intermediates. Reduction of a dicobalt(iii,iii) core ligated by the polypyridyl ligand dipyridylethane naphthyridine (DPEN) by two electrons and subsequent protonation result in the release of one water moiety to furnish a dicobalt(ii,ii) center with an open binding site. This reduced core may be independently isolated by chemical reduction.

View Article and Find Full Text PDF

Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach.

View Article and Find Full Text PDF

The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts.

View Article and Find Full Text PDF

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application.

View Article and Find Full Text PDF

Differential electrochemical mass spectrometry (DEMS) analysis of the oxygen isotopologues produced by (18)O-labeled Co-OEC in H2(16)O reveals that water splitting catalysis proceeds by a mechanism that involves direct coupling between oxygens bound to dicobalt edge sites of Co-OEC. The edge site chemistry of Co-OEC has been probed by using a dinuclear cobalt complex. (17)O NMR spectroscopy shows that ligand exchange of OH/OH2 at Co(III) edge sites is slow, which is also confirmed by DEMS experiments of Co-OEC.

View Article and Find Full Text PDF

The selective four electron, four proton, electrochemical reduction of O2 to H2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O2 reduction to H2O in organic solvents, taking into account the presence of an exogenous proton donor.

View Article and Find Full Text PDF

Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones.

View Article and Find Full Text PDF

The contemporary demand to generate fuels from solar energy has stimulated intense effort to develop water splitting catalysts that can be coupled to light-absorbing materials. Cobalt oxido catalyst (Co-OECs) films deposited from buffered Co(II) solutions have emerged as arguably the most studied class of heterogeneous oxygen evolution catalysts. The interest in these materials stems from their formation by self-assembly, their self-healing properties, and their promising catalytic activity under a variety of conditions.

View Article and Find Full Text PDF

The observed water oxidation activity of the compound class Co4O4(OAc)4(Py-X)4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co4O4 molecular cubanes.

View Article and Find Full Text PDF

A peroxide dianion (O2(2-)) can be isolated within the cavity of hexacarboxamide cryptand, [(O2)⊂mBDCA-5t-H6](2-), stabilized by hydrogen bonding but otherwise free of proton or metal-ion association. This feature has allowed the electron-transfer (ET) kinetics of isolated peroxide to be examined chemically and electrochemically. The ET of [(O2)⊂mBDCA-5t-H6](2-) with a series of seven quinones, with reduction potentials spanning 1 V, has been examined by stopped-flow spectroscopy.

View Article and Find Full Text PDF

A heptanuclear cobalt cluster was synthesized in two different oxidation states, Co(II)7 and a mixed valence Co(III)Co(II)6, as a soluble model of a cobalt-phosphate/borate (Co-OEC) water splitting catalyst. Crystallographic characterization indicates similar cluster cores, distinguished primarily at the central Co atom. An anion associates to the cluster cores via hydrogen bonding.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqdu4gnje3ht5e0p4nd57qcbhlvk4qd2d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once