Publications by authors named "Andrew M Tilston-Lunel"

Background: Bronchial premalignant lesions (PMLs) are composed primarily of cells resembling basal epithelial cells of the airways, which through poorly understood mechanisms have the potential to progress to lung squamous cell carcinoma (LUSC). Despite ongoing efforts that have mapped gene expression and cell diversity across bronchial PML pathologies, signaling and transcriptional events driving malignancy are poorly understood. Evidence has suggested key roles for the Hippo pathway effectors YAP and TAZ and associated TEAD and TP63 transcription factor families in bronchial basal cell biology and LUSC.

View Article and Find Full Text PDF

The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology.

View Article and Find Full Text PDF

Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ.

View Article and Find Full Text PDF
Article Synopsis
  • AEC2 dysfunction plays a crucial role in both adult and pediatric interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), but studying early disease mechanisms has been challenging due to limited access to primary AEC2s.
  • Researchers developed an in vitro model using patient-specific induced pluripotent stem cells (iPSCs) with a disease-associated variant to explore AEC2 dysfunction.
  • Findings show that mutant AEC2s accumulate improperly processed proteins, leading to reduced progenitor capacity and metabolic issues, and treatment with hydroxychloroquine worsens these dysfunctions, demonstrating the model's potential for studying disease mechanisms in ILD.
View Article and Find Full Text PDF

G Protein Suppressor 2 (GPS2) is a multifunctional protein that exerts important roles in inflammation and metabolism in adipose, liver, and immune cells. GPS2 has recently been identified as a significantly mutated gene in breast cancer and other malignancies and proposed to work as a putative tumor suppressor. However, molecular mechanisms by which GPS2 prevents cancer development and/or progression are largely unknown.

View Article and Find Full Text PDF

The transcriptional coactivator with PDZ-binding motif (TAZ), which is encoded by the WWTR1 gene, is a key transcriptional effector of the Hippo signaling pathway. TAZ function has been implicated in a variety of developmental processes and diseases, most notably in driving oncogenesis. Given that nuclear-cytoplasmic localization dynamics dictate TAZ activity, techniques for visualizing TAZ localization are critical for its study.

View Article and Find Full Text PDF

Genome sequencing is now a common procedure, but prior to this, screening experiments using protein baits was one of the routinely used methods that, occasionally, allowed the identification of new gene products. One such experiment uncovered the gene product called willin/human Expanded/FRMD6. Initial characterization studies found that willin bound phospholipids and was strongly co-localised with actin.

View Article and Find Full Text PDF

Crumbs 3 (CRB3) is a component of epithelial junctions, which has been implicated in apical-basal polarity, apical identity, apical stability, cell adhesion, and cell growth. CRB3 undergoes alternative splicing to yield two variants: CRB3a and CRB3b. Here, we describe novel data demonstrating that, as with previous studies on CRB3a, CRB3b also promotes the formation of tight junctions (TJs).

View Article and Find Full Text PDF

Willin/FRMD6 was first identified in the rat sciatic nerve, which is composed of neurons, Schwann cells, and fibroblasts. Willin is an upstream component of the Hippo signaling pathway, which results in the inactivation of the transcriptional co-activator YAP through Ser127 phosphorylation. This in turn suppresses the expression of genes involved in cell growth, proliferation and cancer development ensuring the control of organ size, cell contact inhibition and apoptosis.

View Article and Find Full Text PDF