Publications by authors named "Andrew M Sackman"

Climate change poses several challenges to biological communities including changes in the frequency of encounters between closely related congeners as a result of range shifts. When climate change leads to increased hybridization, hybrid dysfunction or genetic swamping may increase extinction risk-particularly in range-restricted species with low vagility. The Peaks of Otter Salamander, , is a fully terrestrial woodland salamander that is restricted to ~18 km of ridgeline in the mountains of southwestern Virginia, and its range is surrounded by the abundant and widespread Eastern Red-backed Salamander, .

View Article and Find Full Text PDF

A long-standing prediction in evolutionary biology is that organisms experience a so-called "cost of complexity" manifested as a decreasing rate of adaptation in populations as organisms or selective environments become increasingly complex. This theory assumes the ubiquity of antagonistic pleiotropy, or trade-offs in fitness, for mutations affecting multiple traits or phenotypes. A particular manifestation of antagonism thought to be at play in adaptive dynamics involves the relationship between viral growth rate and capsid stability, an interaction that may impede the adaptation of viral pathogens to novel hosts and environments.

View Article and Find Full Text PDF

The recent increase in time-series population genomic data from experimental, natural, and ancient populations has been accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However, these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny number, may be best characterized by multiple-merger coalescent models.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a member of the β -herpesvirus subfamily within Herpesviridae that is nearly ubiquitous in human populations, and infection generally results only in mild symptoms. However, symptoms can be severe in immunonaive individuals, and transplacental congenital infection of HCMV can result in serious neurological sequelae. Recent work has revealed much about the demographic and selective forces shaping the evolution of congenitally transmitted HCMV both on the level of hosts and within host compartments, providing insight into the dynamics of congenital infection, reinfection, and evolution of HCMV with important implications for the development of effective treatments and vaccines.

View Article and Find Full Text PDF

Gene interactions, or epistasis, play a large role in determining evolutionary outcomes. The ruggedness of fitness landscapes, and thus the predictability of evolution and the accessibility of high-fitness genotypes, is determined largely by the pervasiveness of epistasis and the degree of correlation between similar genotypes. We created all possible pairings of three sets of five beneficial first-step mutations fixed during adaptive walks under three different regimes: selection on growth rate alone, on growth rate and thermal stability, and on growth rate and pH stability.

View Article and Find Full Text PDF

Convergent evolution has been demonstrated across all levels of biological organization, from parallel nucleotide substitutions to convergent evolution of complex phenotypes, but whether instances of convergence are the result of selection repeatedly finding the same optimal solution to a recurring problem or are the product of mutational biases remains unsettled. We generated 20 replicate lineages allowed to fix a single mutation from each of four bacteriophage genotypes under identical selective regimes to test for parallel changes within and across genotypes at the levels of mutational effect distributions and gene, protein, amino acid, and nucleotide changes. All four genotypes shared a distribution of beneficial mutational effects best approximated by a distribution with a finite upper bound.

View Article and Find Full Text PDF

Adaptive evolution progresses as a series of steps toward a multidimensional phenotypic optimum, and organismal or environmental complexity determines the number of phenotypic dimensions, or traits, under selection. Populations evolving in complex environments may experience costs of complexity such that improvement in one or more traits is impeded by selection on others. We compared the fitness effects of the first fixed mutations for populations of single-stranded DNA bacteriophage evolving under simple selection for growth rate to those of populations evolving under more complex selection for growth rate as well as capsid stability.

View Article and Find Full Text PDF

Horizontal gene transfer and recombination occur across many groups of viruses and play key roles in important viral processes such as host-range expansion and immune-system avoidance. To have any predictive power regarding the ability of viruses to readily recombine, we must determine the extent to which epistasis restricts the success of recombinants, particularly as it relates to the genetic divergence between parental strains. In any hybridization event, the evolutionary success or failure of hybrids is largely determined by the pervasiveness of epistasis in the parental genomes.

View Article and Find Full Text PDF

The success or failure of hybrids and the factors that determine their fitness have ecological, evolutionary, medical, and economic implications. Hybrid fitness is a major determinant of the size of hybrid zones and the maintenance of related species with overlapping ranges. It also influences the evolution of emerging pathogens and the success of economically important crop species experimentally hybridized in search of strains with increased yields or disease resistance.

View Article and Find Full Text PDF