Publications by authors named "Andrew M Parrott"

Context: The detection of low-level persistent or relapsed B-cell neoplasms, particularly post-therapy, can be challenging, often requiring multiple testing modalities.

Objective: Here we investigate the utility of CD19-based selection of neoplastic B-cells (CD19S) as an enrichment strategy to improve the detection rate of cytogenetic abnormalities in post-therapy samples of B-cell neoplasms, especially those with low-level disease.

Design: In a cohort largely comprised of post-therapy B-ALL and CLL samples, we performed fluorescence in situ hybridization (FISH) analysis on CD19-selected cells (CD19S FISH) in 128 specimens from 88 patients, and on non-selected cells (NS FISH) in a subset of cases.

View Article and Find Full Text PDF

Mantle cell lymphomas (MCLs) are the prototypic B-cell non-Hodgkin lymphomas defined by cyclin D1 gene (CCND1; or other cyclin D family gene) rearrangements. However, extremely rare cases of diffuse large B-cell lymphomas (DLBCLs) harboring CCND1 rearrangements, resulting in cyclin D1 protein expression, have also been reported. In this report, we describe an unusual primary large B-cell lymphoma of non-germinal center immunophenotype of the central nervous system (CNS) in an elderly male patient, which was negative for CD5 and SOX11, and exhibited cyclin D1 expression.

View Article and Find Full Text PDF

The advent of sensitive and robust quantitative proteomics techniques has been emerging as a vital tool for deciphering complex biological puzzles that would have been challenging to conventional molecular biology methods. The method here describes the use of two isotope labeling techniques-isobaric tags for relative and absolute quantification (iTRAQ) and redox isotope-coded affinity tags (ICAT)-to elucidate the cardiovascular redox-proteome changes and thioredoxin 1 (Trx1)-regulated protein network in cardiac-specific Trx1 transgenic mouse models. The strategy involves the use of an amine-labeling iTRAQ technique, gauging the global proteome changes in Trx1 transgenic mice at the protein level, while ICAT, labeling redox-sensitive cysteines, reveals the redox status of cysteine residues.

View Article and Find Full Text PDF

Protein S-nitrosylation is a dynamic post-translational modification (PTM) of specific cysteines within a target protein. Both proteins and small molecules are known to regulate the attachment and removal of this PTM, and proteins exhibiting such a function are transnitrosylase or denitrosylase candidates. With the advent of the biotin switch technique coupled to high-throughput proteomics workflows, the identification and quantification of large numbers of S-nitrosylated proteins and peptides is now possible.

View Article and Find Full Text PDF

The small NF90 associated RNA (snaR) family of small noncoding RNAs (ncRNA) appears to have evolved from retrotransposon ancestors at or soon after pivotal stages in primate evolution. snaRs are thought to be derived from a FLAM C-like (free left Alu monomer) element through multiple short insertion/deletion (indel) and nucleotide (nt) substitution events. Tracing snaR's complex evolutionary history through primate genomes led to the recent discovery of two novel retrotransposons: the Alu/snaR related (ASR) and catarrhine ancestor of snaR (CAS) elements.

View Article and Find Full Text PDF

S-Nitrosylation is a reversible PTM for regulating protein function. Thioredoxin-1 (Trx1) catalyzes either transnitrosylation or denitrosylation of specific proteins, depending on the redox status of the cysteines within its conserved oxidoreductase CXXC motif. With a disulfide bond formed between the two catalytic cysteines, Trx1 is not only inactive as a denitrosylase, but it may also be nitrosylated at Cys73 and serve as a transnitrosylating agent.

View Article and Find Full Text PDF
Article Synopsis
  • Redox post-translational modifications (PTMs) are important for how signals are sent in our body, but the specific proteins and systems that help with these changes are still being studied.
  • Thioredoxin 1 (Trx1) is a special protein that helps break down disulfide bonds and also can add or remove nitric oxide from other proteins.
  • Recent research has shown that Trx1 plays a key role in controlling various processes in our body, and new techniques are helping scientists find out more about how Trx1 interacts with other proteins.
View Article and Find Full Text PDF

Human chorionic gonadotropin (hCG) is a glycoprotein hormone essential to pregnancy. hCG is heterodimeric and functionally defined by its β subunit. hCGβ evolved from the β subunit of luteinizing hormone in two phases.

View Article and Find Full Text PDF

We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates.

View Article and Find Full Text PDF

Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining Casp3 nitrosylation specificity.

View Article and Find Full Text PDF

Mammalian mitochondria contain full-length genome and a single-stranded 7S DNA. Although the copy number of mitochondrial DNA (mtDNA) varies depending on the cell type and also in response to diverse environmental stresses, our understanding of how mtDNA and 7S DNA are maintained and regulated is limited, partly due to lack of reliable in vitro assay systems that reflect the in vivo functionality of mitochondria. Here we report an in vitro assay system to measure synthesis of both mtDNA and 7S DNA under a controllable in vitro condition.

View Article and Find Full Text PDF

Drosophila maleless (MLE) is a member of helicase superfamily 2 and functions as a dosage compensation factor essential for the development of male flies. This function provides a good opportunity to investigate diverse biochemical activities associated with MLE in the context of a defined in vivo pathway, i.e.

View Article and Find Full Text PDF

Topoisomerase IIalpha interacts with numerous nuclear factors, through which it is engaged in diverse nuclear events such as DNA replication, transcription and the formation or maintenance of heterochromatin. We previously reported that topoisomerase IIalpha interacts with RNA helicase A (RHA), consistent with a recent view that topoisomerases and helicases function together. Intrigued by our observation that the RHA-topoisomerase IIalpha interaction is sensitive to ribonuclease A, we explored whether the RHA-topoisomerase IIalpha interaction can be recapitulated in vitro using purified proteins and a synthetic RNA.

View Article and Find Full Text PDF

Nuclear factor 90 (NF90) and its C-terminally extended isoform, NF110, have been isolated as DNA- and RNA-binding proteins together with the less-studied protein NF45. These complexes have been implicated in gene regulation, but little is known about their cellular roles and whether they are redundant or functionally distinct. We show that heterodimeric core complexes, NF90-NF45 and NF110-NF45, exist within larger complexes that are more labile and contain multiple NF90/110 isoforms and additional proteins.

View Article and Find Full Text PDF

Ribonucleoprotein complexes (RNPs) perform a multitude of functions in the cell. Elucidating the composition of such complexes and unraveling their many interactions are current challenges in molecular biology. To stabilize complexes formed in cells and to preclude reassortment of their components during isolation, we employ chemical crosslinking of the RNA and protein moieties.

View Article and Find Full Text PDF

Nuclear factor 90 (NF90) is a double-stranded RNA-binding protein implicated in multiple cellular functions, but with few identified RNA partners. Using in vivo cross-linking followed by immunoprecipitation, we discovered a family of small NF90-associated RNAs (snaR). These highly structured non-coding RNAs of approximately 117 nucleotides are expressed in immortalized human cell lines of diverse lineages.

View Article and Find Full Text PDF

Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to compare the accuracy, required time, and potential advantages of rapid prototyping technology with traditional methods in the manufacture of wax patterns for two facial prostheses.

Materials And Methods: Two clinical situations were investigated: the production of an auricular prosthesis and the duplication of an existing maxillary prosthesis, using a conventional and a rapid prototyping method for each. Conventional wax patterns were created from impressions taken of a patient's remaining ear and an oral prosthesis.

View Article and Find Full Text PDF

Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs.

View Article and Find Full Text PDF