Publications by authors named "Andrew M Mountcastle"

Some flying insects frequently collide their wingtips with obstacles, and the next generation of insect-inspired micro air vehicles will inevitably face similar wing collision risks when they are deployed in real-world environments. Wasp wings feature a flexible resilin joint called a 'costal break' that allows the wingtip to reversibly collapse upon collision, helping to mitigate wing damage over repeated collisions. However, the costal break may provide additional benefits beyond reducing wing wear.

View Article and Find Full Text PDF

The original version of the Article contained incorrect citation information in reference 67. The reference should read "Russell, A. L.

View Article and Find Full Text PDF

Individuals in social insect colonies cooperate to perform collective work. While colonies often respond to changing environmental conditions by flexibly reallocating workers to different tasks, the factors determining which workers switch and why are not well understood. Here, we use an automated tracking system to continuously monitor nest behavior and foraging activity of uniquely identified workers from entire bumble bee (Bombus impatiens) colonies foraging in a natural outdoor environment.

View Article and Find Full Text PDF

During flight, insect wings bend and twist under the influence of aerodynamic and inertial forces. We tested whether wing resonance of honeybees () matches the wingbeat frequency, against the 'stiff element' hypothesis that the wing's first longitudinal mode exceeds the wingbeat frequency. Six bees were immobilized with their right wing pair outspread, and stimulated with a shaker while the normal modes were recorded with a scanning Doppler laser vibrometer.

View Article and Find Full Text PDF

Insect wings do not contain intrinsic musculature to change shape, but rather bend and twist passively during flight. Some insect wings feature flexible joints along their veins that contain patches of resilin, a rubber-like protein. Bumblebee wings exhibit a central resilin joint (1m-cu) that has previously been shown to improve vertical force production during hovering flight.

View Article and Find Full Text PDF

Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits.

View Article and Find Full Text PDF

Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment.

View Article and Find Full Text PDF

A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames.

View Article and Find Full Text PDF

Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee's center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability.

View Article and Find Full Text PDF

The wings of many insects accumulate considerable wear and tear during their lifespan, and this irreversible structural damage can impose significant costs on insect flight performance and survivability. Wing wear in foraging bumblebees (and likely many other species) is caused by inadvertent, repeated collisions with vegetation during flight, suggesting the possibility that insect wings may display biomechanical adaptations to mitigate the damage associated with collisions. We used a novel experimental technique to artificially induce wing wear in bumblebees and yellowjacket wasps, closely related species with similar life histories but distinct wing morphologies.

View Article and Find Full Text PDF

The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context.

View Article and Find Full Text PDF